Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (527)
  • Open Access

    ARTICLE

    Synthesis and Photoresponse of Quinary Zinc-Blende Cu3FeInSnS6 Nanoplates

    Dehui Li1,#, Yiming Guo1,#, Tao He1, Binbin Zhang1, Haixia Yu2,*, Lingkun Meng1,*

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.075922 - 26 January 2026

    Abstract Quinary Cu3FeInSnS6 (CFITS) nanoplates were synthesized through a synergistic dual-cation substitution strategy using a hot-injection method, where oleylamine and 1-dodecanethiol served as coordinating ligands to guide two-dimensional growth. The nanocrystals were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and absorption spectroscopy. Structural analysis confirms that the CFITS nanoplates crystallize in a phase-pure cubic zinc-blende structure (space group F-43 m) without detectable secondary phases. Optical measurements reveal that the nanoplates exhibit broad and intense visible-light absorption with a direct bandgap of 1.51 ± 0.03 eV, suitable for photovoltaic applications. Under standard AM 1.5 G… More >

  • Open Access

    ARTICLE

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

    Francisco Daniel García1,2, Solange Nicole Aigner1,2, Natalia Raffaeli3, Antonio José Barotto3, Eleana Spavento3, Mariano Martín Escobar1,4, Marcela Angela Mansilla1,4, Alejandro Bacigalupe1,4,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0181 - 23 January 2026

    Abstract This study explores the use of black soldier fly larvae protein as a bio-based adhesive to produce particleboards from sugarcane bagasse. A comprehensive evaluation was conducted, including rheological characterization of the adhesive and physical–mechanical testing of the panels according to European standards. The black soldier fly larvae-based adhesive exhibited gel-like viscoelastic behavior, rapid partial structural recovery after shear, and favorable application properties. Particleboards manufactured with this adhesive and sugarcane bagasse achieved promising mechanical performance, with modulus of rupture and modulus of elasticity values of 30.2 and 3500 MPa, respectively. Internal bond strength exceeded 0.4 MPa,… More > Graphic Abstract

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

  • Open Access

    REVIEW

    Recent Advances in Hydrothermal Carbonization of Biomass: The Role of Process Parameters and the Applications of Hydrochar

    Cheng Zhang, Rui Zhang, Yu Shao, Jiabin Wang, Qianyue Yang, Fang Xie, Rongling Yang, Hongzhen Luo*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0157 - 23 January 2026

    Abstract Biomass is a resource whose organic carbon is formed from atmospheric carbon dioxide. It has numerous characteristics such as low carbon emissions, renewability, and environmental friendliness. The efficient utilization of biomass plays a significant role in promoting the development of clean energy, alleviating environmental pressures, and achieving carbon neutrality goals. Among the numerous processing technologies of biomass, hydrothermal carbonization (HTC) is a promising thermochemical process that can decompose and convert biomass into hydrochar under relatively mild conditions of approximately 180°C–300°C, thereby enabling its efficient resource utilization. In addition, HTC can directly process feedstocks with high… More >

  • Open Access

    REVIEW

    Monocyte Phenotypic Plasticity in Peripheral Artery Disease: From Pathophysiology to Therapeutic Targets

    Gizem Kaynar Beyaz1,*, Ahmet Kirbas2, Sevgi Kalkanli Tas1

    BIOCELL, Vol.50, No.1, 2026, DOI:10.32604/biocell.2025.072368 - 23 January 2026

    Abstract Peripheral artery disease (PAD) remains a significant global health issue, with current treatments primarily focused on relieving symptoms and addressing macrovascular issues. However, critical immunoinflammatory mechanisms are often overlooked. Recent evidence suggests that monocyte phenotypic plasticity plays a central role in PAD development, affecting atherogenesis, plaque progression, ischemia-reperfusion injury, and chronic ischemic remodeling. This narrative review aims to summarize the latest advances (2023–2025) in understanding monocyte diversity, functional states, and their changes throughout different stages of PAD. We discuss both established and emerging biomarkers, such as circulating monocyte subset proportions, functional assays, immune checkpoint expression, More >

  • Open Access

    ARTICLE

    RP3-340N1.2 Knockdown Suppresses Proliferation and Migration by Downregulating IL-6 in Non-Small Cell Lung Cancer

    Hang Zhang1,#, Meng-Yuan Chu1,#, Guohui Lv1, You-Jie Li1, Xuhang Liu2, Fei Jiao1,*, Yun-Fei Yan1,*

    BIOCELL, Vol.50, No.1, 2026, DOI:10.32604/biocell.2025.068322 - 23 January 2026

    Abstract Objectives: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality, with limited understanding of lncRNA-driven mechanisms in tumor progression. This study aimed to identify differentially expressed lncRNAs in NSCLC tissues and elucidate the functional role of the significantly upregulated RP3-340N1.2 in promoting malignancy. Methods: RNA sequencing was used to screen dysregulated lncRNAs. RP3-340N1.2 was functionally characterized via gain/loss-of-function assays in NSCLC cells, assessing proliferation, migration, and macrophage polarization. Mechanisms of interleukin 6 (IL-6) regulation were explored using cytokine profiling, Actinomycin D assays, and RNA Immunoprecipitation (RIP) assays to study RP3-340N1.2 interactions with… More >

  • Open Access

    ARTICLE

    Esketamine Enhances the Chemosensitivity of Colorectal Adenocarcinoma Cells to 5-Fluorouracil via AMPK/mTOR/HMMR Signaling Pathway

    Yuerou Feng, Panpan Tong, Shuwen Fu, Xiaofan Lu, Liquan Zheng, Jielan Lai*, Renchun Lai*

    Oncology Research, Vol.34, No.2, 2026, DOI:10.32604/or.2025.072563 - 19 January 2026

    Abstract Background: The efficacy of standard 5-fluorouracil (5-FU) chemotherapy for colorectal cancer is limited by drug resistance and adverse effects, prompting research into esketamine, a potent ketamine variant with analgesic, antidepressant, and recently discovered anti-tumor properties, to determine if it can enhance 5-FU’s chemosensitivity. This study investigates whether esketamine synergizes with 5-FU to enhance therapeutic efficacy in colorectal adenocarcinoma cell models. Methods: We performed functional assays to evaluate proliferation (CCK-8), migration (wound healing), invasion (Transwell), and apoptosis (flow cytometry) in colorectal adenocarcinoma cell lines treated with 5-FU alone or in combination with esketamine. Transcriptomic profiling was… More >

  • Open Access

    CASE REPORT

    Detection of Prostate Carcinoma in an Asymptomatic Individual Initiated by an Immunological Biopsy—A Case Report

    Simon Burg1, Audrey Laure Céline Grust1,2,*

    Oncology Research, Vol.34, No.2, 2026, DOI:10.32604/or.2025.068555 - 19 January 2026

    Abstract Background: With a total of 1.46 million new cases and 396,792 deaths in 2022, prostate cancer is a major medical challenge around the world. Detecting and treating cancer at earlier, preferably localized stages can significantly increase survival rates. Here, a novel blood-based cancer screening as a pre-test in combination with targeted MRI imaging enabled the early diagnosis of prostate cancer. Case Description: We present the case of a 64-year-old man who participated in a prospective, interventional, multicenter cancer screening study where an immunological biopsy-based technique served as a part of a novel screening technique. This immunology… More >

  • Open Access

    ARTICLE

    Machine Learning Based Simulation, Synthesis, and Characterization of Zinc Oxide/Graphene Oxide Nanocomposite for Energy Storage Applications

    Tahir Mahmood1,*, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Munir3, Babiker M. A. Abdel-Banat3, Hassan Ali Dinar3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072436 - 12 January 2026

    Abstract Artificial intelligence (AI) based models have been used to predict the structural, optical, mechanical, and electrochemical properties of zinc oxide/graphene oxide nanocomposites. Machine learning (ML) models such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and hybrid, along with fuzzy logic tools, were applied to predict the different properties like wavelength at maximum intensity (444 nm), crystallite size (17.50 nm), and optical bandgap (2.85 eV). While some other properties, such as energy density, power density, and charge transfer resistance, were also predicted with the help of datasets of 1000 (80:20). In… More >

  • Open Access

    ARTICLE

    Integrative Multi-Omics Analysis and Experiments Validation Identify COX5B as a Novel Therapeutic Target for Lung Adenocarcinoma

    Lv Ling1,#, Minying Lu2,#, Ling Ye3, Yuanhang Chen2, Sheng Lin2, Jun Yang2, Yu Rong2,*, Guixiong Wu4,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.069889 - 30 December 2025

    Abstract Background: A significant proportion of patients still cannot benefit from existing targeted therapies and immunotherapies, making the search for new treatment strategies extremely urgent. In this study, we combined integrate public data analysis with experimental validation to identify novel prognostic biomarkers and therapeutic targets for lung adenocarcinoma (LUAD). Methods: We analyzed RNA and protein databases to assess the expression levels of cytochrome C oxidase 5B (COX5B) in LUAD. Several computational algorithms were employed to investigate the relationship between COX5B and immune infiltration in LUAD. To further elucidate the role of COX5B in LUAD, we utilized… More > Graphic Abstract

    Integrative Multi-Omics Analysis and Experiments Validation Identify COX5B as a Novel Therapeutic Target for Lung Adenocarcinoma

  • Open Access

    ARTICLE

    P2RX1 Influences the Prognosis of Ph+/Ph-Like ALL through Energy and Calcium Metabolism

    Xiangmei Ye1,2,3, Baoyi Yang4, Xin Zhang5, Luyuan Yang1, Likun Zhang5, Qin Ren1, Xiaobing Li1, Leiguang Feng1, Lanlan Wei3,6,7,*, Peng Song1, Yuqing Ye8, Xin Lian9, Yujuan Gao9, Haidi Tang1, Zhiyu Liu1

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.068814 - 30 December 2025

    Abstract Objectives: Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia (Ph+/Ph-like ALL) constitute the majority of relapsed/refractory B-ALL (R/R B-ALL) cases, highlighting an urgent need to discover new therapeutic targets. This study aims to elucidate the mechanisms underlying poor prognosis in Ph+/Ph-like ALL through transcriptome sequencing and functional cytological assays, with the goal of informing new clinical treatment strategies. Results: Transcriptomic analysis of Ph+/Ph-like ALL patients revealed that low expression of P2X Purinoceptor 1 (P2RX1) was associated with unfavorable outcomes. Specifically, patients with poor prognosis and low P2RX1 expression exhibited downregulation of… More >

Displaying 1-10 on page 1 of 527. Per Page