Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (231)
  • Open Access

    ARTICLE

    Modeling Pruning as a Phase Transition: A Thermodynamic Analysis of Neural Activations

    Rayeesa Mehmood*, Sergei Koltcov, Anton Surkov, Vera Ignatenko

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072735 - 12 January 2026

    Abstract Activation pruning reduces neural network complexity by eliminating low-importance neuron activations, yet identifying the critical pruning threshold—beyond which accuracy rapidly deteriorates—remains computationally expensive and typically requires exhaustive search. We introduce a thermodynamics-inspired framework that treats activation distributions as energy-filtered physical systems and employs the free energy of activations as a principled evaluation metric. Phase-transition–like phenomena in the free-energy profile—such as extrema, inflection points, and curvature changes—yield reliable estimates of the critical pruning threshold, providing a theoretically grounded means of predicting sharp accuracy degradation. To further enhance efficiency, we propose a renormalized free energy technique that More >

  • Open Access

    ARTICLE

    A Firefly Algorithm-Optimized CNN–BiLSTM Model for Automated Detection of Bone Cancer and Marrow Cell Abnormalities

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072343 - 12 January 2026

    Abstract Early and accurate detection of bone cancer and marrow cell abnormalities is critical for timely intervention and improved patient outcomes. This paper proposes a novel hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) architecture, optimized using the Firefly Optimization algorithm (FO). The proposed CNN-BiLSTM-FO model is tailored for structured biomedical data, capturing both local patterns and sequential dependencies in diagnostic features, while the Firefly Algorithm fine-tunes key hyperparameters to maximize predictive performance. The approach is evaluated on two benchmark biomedical datasets: one comprising diagnostic data… More >

  • Open Access

    ARTICLE

    Lightweight Airborne Vision Abnormal Behavior Detection Algorithm Based on Dual-Path Feature Optimization

    Baixuan Han1, Yueping Peng1,*, Zecong Ye2, Hexiang Hao1, Xuekai Zhang1, Wei Tang1, Wenchao Kang1, Qilong Li1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.071071 - 09 December 2025

    Abstract Aiming at the problem of imbalance between detection accuracy and algorithm model lightweight in UAV aerial image target detection algorithm, a lightweight multi-category abnormal behavior detection algorithm based on improved YOLOv11n is designed. By integrating multi-head grouped self-attention mechanism and Partial-Conv, a two-way feature grouping fusion module (DFPF) was designed, which carried out effective channel segmentation and fusion strategies to reduce redundant calculations and memory access. C3K2 module was improved, and then unstructured pruning and feature distillation technology were used. The algorithm model is lightweight, and the feature extraction ability for airborne visual abnormal behavior… More >

  • Open Access

    REVIEW

    Detecting Anomalies in FinTech: A Graph Neural Network and Feature Selection Perspective

    Vinh Truong Hoang1,*, Nghia Dinh1, Viet-Tuan Le1, Kiet Tran-Trung1, Bay Nguyen Van1, Kittikhun Meethongjan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-40, 2026, DOI:10.32604/cmc.2025.068733 - 10 November 2025

    Abstract The Financial Technology (FinTech) sector has witnessed rapid growth, resulting in increasingly complex and high-volume digital transactions. Although this expansion improves efficiency and accessibility, it also introduces significant vulnerabilities, including fraud, money laundering, and market manipulation. Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data. Graph Neural Networks (GNNs), capable of modeling intricate interdependencies among entities, have emerged as a powerful framework for detecting subtle and sophisticated anomalies. However, the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability, performance, and More >

  • Open Access

    ARTICLE

    The intelligence of the Copts of Sudan: A test of norms validation

    Edward Dutton1,*, Salwa Saleh Mohamed Alamein2, Guy Madison3, David Becker4, Mohammed Ateik Al-Khadher5, Salaheldin Farah Attallah Bakhiet6, Yousif Balil Bashir Maki6, Nasser Said Gomaa Abdelrasheed7, Ahmad Mohammad Alzoubi8,9

    Journal of Psychology in Africa, Vol.35, No.5, pp. 695-699, 2025, DOI:10.32604/jpa.2025.067488 - 24 October 2025

    Abstract This study validated the Standard Progressive Matrices (SPM+) norms in the Sudanese context. A sample of Coptic Sudanese (n = 385, girls = 34.5%) and other Sudanese children (n = 1656, girls = 51.5%) aged between 7 and 10 took the SPM+. Reliability was acceptable (Cronbach’s alpha = 0.755 for the Copts). British Intelligence Quotient (IQ) norms scores from the SPM+ for the Copts were compared to those of the (North) Sudanese, controlling for age. The mean IQ of the Sudanese Copts was 88.92, while that of the other (North) Sudanese was 78.26. This difference More >

  • Open Access

    ARTICLE

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

    Bassel Weiss1, Segundo Esteban2,*, Matilde Santos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3387-3418, 2025, DOI:10.32604/cmes.2025.070070 - 30 September 2025

    Abstract Anomaly detection in wind turbines involves emphasizing its ability to improve operational efficiency, reduce maintenance costs, extend their lifespan, and enhance reliability in the wind energy sector. This is particularly necessary in offshore wind, currently one of the most critical assets for achieving sustainable energy generation goals, due to the harsh marine environment and the difficulty of maintenance tasks. To address this problem, this work proposes a data-driven methodology for detecting power generation anomalies in offshore wind turbines, using normalized and linearized operational data. The proposed framework transforms heterogeneous wind speed and power measurements into… More > Graphic Abstract

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

  • Open Access

    ARTICLE

    Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks

    Divya Arivalagan, Vignesh Ochathevan*, Rubankumar Dhanasekaran

    Congenital Heart Disease, Vol.20, No.4, pp. 477-501, 2025, DOI:10.32604/chd.2025.070372 - 18 September 2025

    Abstract Background: The accurate identification of cardiac abnormalities is essential for proper diagnosis and effective treatment of cardiovascular diseases. Method: This work introduces an advanced methodology for detecting cardiac abnormalities and estimating electrocardiographic age (ECG Age) using sophisticated signal processing and deep learning techniques. This study looks at six main heart conditions found in 12-lead electrocardiogram (ECG) data. It addresses important issues like class imbalances, missing lead scenarios, and model generalizations. A modified residual neural network (ResNet) architecture was developed to enhance the detection of cardiac abnormalities. Results: The proposed ResNet demonst rated superior performance when compared with… More > Graphic Abstract

    Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks

  • Open Access

    ARTICLE

    A Novel Multi-Objective Topology Optimization Method for Stiffness and Strength-Constrained Design Using the SIMP Approach

    Jianchang Hou1, Zhanpeng Jiang1, Fenghe Wu1, Hui Lian1, Zhaohua Wang2, Zijian Liu3, Weicheng Li1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1545-1572, 2025, DOI:10.32604/cmes.2025.068482 - 31 August 2025

    Abstract In this paper, a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints, utilizing the Solid Isotropic Material with Penalization approach. Element densities are regulated through sensitivity filtering to mitigate numerical instabilities associated with stress concentrations. A p-norm aggregation function is employed to globalize local stress constraints, and a normalization technique linearly weights strain energy and stress, transforming the multi-objective problem into a single-objective formulation. The sensitivity of the objective function with respect to design variables is rigorously derived. Three numerical examples are presented, comparing the optimized structures in terms More >

  • Open Access

    ARTICLE

    Evaluating Domain Randomization Techniques in DRL Agents: A Comparative Study of Normal, Randomized, and Non-Randomized Resets

    Abubakar Elsafi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1749-1766, 2025, DOI:10.32604/cmes.2025.066449 - 31 August 2025

    Abstract Domain randomization is a widely adopted technique in deep reinforcement learning (DRL) to improve agent generalization by exposing policies to diverse environmental conditions. This paper investigates the impact of different reset strategies, normal, non-randomized, and randomized, on agent performance using the Deep Deterministic Policy Gradient (DDPG) and Twin Delayed DDPG (TD3) algorithms within the CarRacing-v2 environment. Two experimental setups were conducted: an extended training regime with DDPG for 1000 steps per episode across 1000 episodes, and a fast execution setup comparing DDPG and TD3 for 30 episodes with 50 steps per episode under constrained computational… More >

  • Open Access

    ARTICLE

    A Hybrid CNN-Transformer Framework for Normal Blood Cell Classification: Towards Automated Hematological Analysis

    Osama M. Alshehri1, Ahmad Shaf2,*, Muhammad Irfan3,*, Mohammed M. Jalal4, Malik A. Altayar4, Mohammed H. Abu-Alghayth5, Humood Al Shmrany6, Tariq Ali7, Toufique A. Soomro8, Ali G. Alkhathami9

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1165-1196, 2025, DOI:10.32604/cmes.2025.067150 - 31 July 2025

    Abstract Background: Accurate classification of normal blood cells is a critical foundation for automated hematological analysis, including the detection of pathological conditions like leukemia. While convolutional neural networks (CNNs) excel in local feature extraction, their ability to capture global contextual relationships in complex cellular morphologies is limited. This study introduces a hybrid CNN-Transformer framework to enhance normal blood cell classification, laying the groundwork for future leukemia diagnostics. Methods: The proposed architecture integrates pre-trained CNNs (ResNet50, EfficientNetB3, InceptionV3, CustomCNN) with Vision Transformer (ViT) layers to combine local and global feature modeling. Four hybrid models were evaluated on… More >

Displaying 1-10 on page 1 of 231. Per Page