Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,507)
  • Open Access

    ARTICLE

    A TimeXer-Based Numerical Forecast Correction Model Optimized by an Exogenous-Variable Attention Mechanism

    Yongmei Zhang*, Tianxin Zhang, Linghua Tian

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073159 - 12 January 2026

    Abstract Marine forecasting is critical for navigation safety and disaster prevention. However, traditional ocean numerical forecasting models are often limited by substantial errors and inadequate capture of temporal-spatial features. To address the limitations, the paper proposes a TimeXer-based numerical forecast correction model optimized by an exogenous-variable attention mechanism. The model treats target forecast values as internal variables, and incorporates historical temporal-spatial data and seven-day numerical forecast results from traditional models as external variables based on the embedding strategy of TimeXer. Using a self-attention structure, the model captures correlations between exogenous variables and target sequences, explores intrinsic More >

  • Open Access

    ARTICLE

    DyLoRA-TAD: Dynamic Low-Rank Adapter for End-to-End Temporal Action Detection

    Jixin Wu1,2, Mingtao Zhou2,3, Di Wu2,3, Wenqi Ren4, Jiatian Mei2,3, Shu Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072964 - 12 January 2026

    Abstract End-to-end Temporal Action Detection (TAD) has achieved remarkable progress in recent years, driven by innovations in model architectures and the emergence of Video Foundation Models (VFMs). However, existing TAD methods that perform full fine-tuning of pretrained video models often incur substantial computational costs, which become particularly pronounced when processing long video sequences. Moreover, the need for precise temporal boundary annotations makes data labeling extremely expensive. In low-resource settings where annotated samples are scarce, direct fine-tuning tends to cause overfitting. To address these challenges, we introduce Dynamic Low-Rank Adapter (DyLoRA), a lightweight fine-tuning framework tailored specifically… More >

  • Open Access

    ARTICLE

    Mitigating Attribute Inference in Split Learning via Channel Pruning and Adversarial Training

    Afnan Alhindi*, Saad Al-Ahmadi, Mohamed Maher Ben Ismail

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072625 - 12 January 2026

    Abstract Split Learning (SL) has been promoted as a promising collaborative machine learning technique designed to address data privacy and resource efficiency. Specifically, neural networks are divided into client and server sub-networks in order to mitigate the exposure of sensitive data and reduce the overhead on client devices, thereby making SL particularly suitable for resource-constrained devices. Although SL prevents the direct transmission of raw data, it does not alleviate entirely the risk of privacy breaches. In fact, the data intermediately transmitted to the server sub-model may include patterns or information that could reveal sensitive data. Moreover,… More >

  • Open Access

    ARTICLE

    Machine Learning Based Simulation, Synthesis, and Characterization of Zinc Oxide/Graphene Oxide Nanocomposite for Energy Storage Applications

    Tahir Mahmood1,*, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Munir3, Babiker M. A. Abdel-Banat3, Hassan Ali Dinar3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072436 - 12 January 2026

    Abstract Artificial intelligence (AI) based models have been used to predict the structural, optical, mechanical, and electrochemical properties of zinc oxide/graphene oxide nanocomposites. Machine learning (ML) models such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and hybrid, along with fuzzy logic tools, were applied to predict the different properties like wavelength at maximum intensity (444 nm), crystallite size (17.50 nm), and optical bandgap (2.85 eV). While some other properties, such as energy density, power density, and charge transfer resistance, were also predicted with the help of datasets of 1000 (80:20). In… More >

  • Open Access

    ARTICLE

    A Firefly Algorithm-Optimized CNN–BiLSTM Model for Automated Detection of Bone Cancer and Marrow Cell Abnormalities

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072343 - 12 January 2026

    Abstract Early and accurate detection of bone cancer and marrow cell abnormalities is critical for timely intervention and improved patient outcomes. This paper proposes a novel hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) architecture, optimized using the Firefly Optimization algorithm (FO). The proposed CNN-BiLSTM-FO model is tailored for structured biomedical data, capturing both local patterns and sequential dependencies in diagnostic features, while the Firefly Algorithm fine-tunes key hyperparameters to maximize predictive performance. The approach is evaluated on two benchmark biomedical datasets: one comprising diagnostic data… More >

  • Open Access

    ARTICLE

    Deep Feature-Driven Hybrid Temporal Learning and Instance-Based Classification for DDoS Detection in Industrial Control Networks

    Haohui Su1, Xuan Zhang1,*, Lvjun Zheng1, Xiaojie Shen2, Hua Liao1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072093 - 12 January 2026

    Abstract Distributed Denial-of-Service (DDoS) attacks pose severe threats to Industrial Control Networks (ICNs), where service disruption can cause significant economic losses and operational risks. Existing signature-based methods are ineffective against novel attacks, and traditional machine learning models struggle to capture the complex temporal dependencies and dynamic traffic patterns inherent in ICN environments. To address these challenges, this study proposes a deep feature-driven hybrid framework that integrates Transformer, BiLSTM, and KNN to achieve accurate and robust DDoS detection. The Transformer component extracts global temporal dependencies from network traffic flows, while BiLSTM captures fine-grained sequential dynamics. The learned… More >

  • Open Access

    ARTICLE

    Spatio-Temporal Earthquake Analysis via Data Warehousing for Big Data-Driven Decision Systems

    Georgia Garani1,*, George Pramantiotis2, Francisco Javier Moreno Arboleda3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071509 - 12 January 2026

    Abstract Earthquakes are highly destructive spatio-temporal phenomena whose analysis is essential for disaster preparedness and risk mitigation. Modern seismological research produces vast volumes of heterogeneous data from seismic networks, satellite observations, and geospatial repositories, creating the need for scalable infrastructures capable of integrating and analyzing such data to support intelligent decision-making. Data warehousing technologies provide a robust foundation for this purpose; however, existing earthquake-oriented data warehouses remain limited, often relying on simplified schemas, domain-specific analytics, or cataloguing efforts. This paper presents the design and implementation of a spatio-temporal data warehouse for seismic activity. The framework integrates… More >

  • Open Access

    ARTICLE

    Personalized Recommendation System Using Deep Learning with Bayesian Personalized Ranking

    Sophort Siet1, Sony Peng2, Ilkhomjon Sadriddinov3, Kyuwon Park4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071192 - 12 January 2026

    Abstract Recommendation systems have become indispensable for providing tailored suggestions and capturing evolving user preferences based on interaction histories. The collaborative filtering (CF) model, which depends exclusively on user-item interactions, commonly encounters challenges, including the cold-start problem and an inability to effectively capture the sequential and temporal characteristics of user behavior. This paper introduces a personalized recommendation system that combines deep learning techniques with Bayesian Personalized Ranking (BPR) optimization to address these limitations. With the strong support of Long Short-Term Memory (LSTM) networks, we apply it to identify sequential dependencies of user behavior and then incorporate… More >

  • Open Access

    ARTICLE

    Classification Method of Lower Limbs Motor Imagery Based on Functional Connectivity and Graph Convolutional Network

    Yang Liu, Qi Lu, Junjie Wu, Huaichang Yin, Shiwei Cheng*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070273 - 12 January 2026

    Abstract The development of brain-computer interfaces (BCI) based on motor imagery (MI) has greatly improved patients’ quality of life with movement disorders. The classification of upper limb MI has been widely studied and applied in many fields, including rehabilitation. However, the physiological representations of left and right lower limb movements are too close and activated deep in the cerebral cortex, making it difficult to distinguish their features. Therefore, classifying lower limbs motor imagery is more challenging. In this study, we propose a feature extraction method based on functional connectivity, which utilizes phase-locked values to construct a… More >

  • Open Access

    ARTICLE

    Solving Multi-Depot Vehicle Routing Problems with Dynamic Customer Demand Using a Scheduling System TS-DPU Based on TS-ACO

    Tsu-Yang Wu1, Chengyuan Yu1, Yanan Zhao2, Saru Kumari3, Chien-Ming Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069139 - 12 January 2026

    Abstract With the increasing complexity of logistics operations, traditional static vehicle routing models are no longer sufficient. In practice, customer demands often arise dynamically, and multi-depot systems are commonly used to improve efficiency. This paper first introduces a vehicle routing problem with the goal of minimizing operating costs in a multi-depot environment with dynamic demand. New customers appear in the delivery process at any time and are periodically optimized according to time slices. Then, we propose a scheduling system TS-DPU based on an improved ant colony algorithm TS-ACO to solve this problem. The classical ant colony More >

Displaying 1-10 on page 1 of 1507. Per Page