Syed Atir Raza1,2, Muhammad Shoaib Farooq1, Uzma Farooq3, Hanen Karamti 4, Tahir Khurshaid5,*, Imran Ashraf6,*
CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3149-3173, 2025, DOI:10.32604/cmc.2025.063255
- 03 July 2025
Abstract Urdu, a prominent subcontinental language, serves as a versatile means of communication. However, its handwritten expressions present challenges for optical character recognition (OCR). While various OCR techniques have been proposed, most of them focus on recognizing printed Urdu characters and digits. To the best of our knowledge, very little research has focused solely on Urdu pure handwriting recognition, and the results of such proposed methods are often inadequate. In this study, we introduce a novel approach to recognizing Urdu pure handwritten digits and characters using Convolutional Neural Networks (CNN). Our proposed method utilizes convolutional layers… More >