Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    A Convolutional Neural Network Based Optical Character Recognition for Purely Handwritten Characters and Digits

    Syed Atir Raza1,2, Muhammad Shoaib Farooq1, Uzma Farooq3, Hanen Karamti 4, Tahir Khurshaid5,*, Imran Ashraf6,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3149-3173, 2025, DOI:10.32604/cmc.2025.063255 - 03 July 2025

    Abstract Urdu, a prominent subcontinental language, serves as a versatile means of communication. However, its handwritten expressions present challenges for optical character recognition (OCR). While various OCR techniques have been proposed, most of them focus on recognizing printed Urdu characters and digits. To the best of our knowledge, very little research has focused solely on Urdu pure handwriting recognition, and the results of such proposed methods are often inadequate. In this study, we introduce a novel approach to recognizing Urdu pure handwritten digits and characters using Convolutional Neural Networks (CNN). Our proposed method utilizes convolutional layers… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Natural Language Processing Model and Optical Character Recognition for Detection of Online Grooming on Social Networking Services

    Sangmin Kim1, Byeongcheon Lee1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2079-2108, 2025, DOI:10.32604/cmes.2025.061653 - 30 May 2025

    Abstract The increased accessibility of social networking services (SNSs) has facilitated communication and information sharing among users. However, it has also heightened concerns about digital safety, particularly for children and adolescents who are increasingly exposed to online grooming crimes. Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims. However, research on grooming detection in South Korea remains limited, as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations, leading to inaccurate classifications. To address these issues, this study proposes a novel… More >

  • Open Access

    ARTICLE

    Enhancing Exam Preparation through Topic Modelling and Key Topic Identification

    Rudraneel Dutta*, Shreya Mohanty

    Journal on Artificial Intelligence, Vol.6, pp. 177-192, 2024, DOI:10.32604/jai.2024.050706 - 19 July 2024

    Abstract Traditionally, exam preparation involves manually analyzing past question papers to identify and prioritize key topics. This research proposes a data-driven solution to automate this process using techniques like Document Layout Segmentation, Optical Character Recognition (OCR), and Latent Dirichlet Allocation (LDA) for topic modelling. This study aims to develop a system that utilizes machine learning and topic modelling to identify and rank key topics from historical exam papers, aiding students in efficient exam preparation. The research addresses the difficulty in exam preparation due to the manual and labour-intensive process of analyzing past exam papers to identify… More >

  • Open Access

    ARTICLE

    Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions

    Adéla Hamplová1,*, Alexey Lyavdansky2,*, Tomáš Novák1, Ondřej Svojše1, David Franc1, Arnošt Veselý1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2869-2889, 2024, DOI:10.32604/cmes.2024.050791 - 08 July 2024

    Abstract This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern deep learning methods in archaeological research. Our research culminates in several key findings and scientific contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context. We also created… More >

  • Open Access

    ARTICLE

    Optimised CNN Architectures for Handwritten Arabic Character Recognition

    Salah Alghyaline*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4905-4924, 2024, DOI:10.32604/cmc.2024.052016 - 20 June 2024

    Abstract Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles. Arabic is morphologically rich, and its characters have a high similarity. The Arabic language includes 28 characters. Each character has up to four shapes according to its location in the word (at the beginning, middle, end, and isolated). This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters. The proposed architectures were derived from the popular CNN architectures, such as VGG, ResNet, and Inception, to make them applicable to recognizing character-size images. The experimental results on three More >

  • Open Access

    ARTICLE

    Baseline Isolated Printed Text Image Database for Pashto Script Recognition

    Arfa Siddiqu, Abdul Basit*, Waheed Noor, Muhammad Asfandyar Khan, M. Saeed H. Kakar, Azam Khan

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 875-885, 2023, DOI:10.32604/iasc.2023.036426 - 29 April 2023

    Abstract The optical character recognition for the right to left and cursive languages such as Arabic is challenging and received little attention from researchers in the past compared to the other Latin languages. Moreover, the absence of a standard publicly available dataset for several low-resource languages, including the Pashto language remained a hurdle in the advancement of language processing. Realizing that, a clean dataset is the fundamental and core requirement of character recognition, this research begins with dataset generation and aims at a system capable of complete language understanding. Keeping in view the complete and full… More >

  • Open Access

    REVIEW

    Review of Optical Character Recognition for Power System Image Based on Artificial Intelligence Algorithm

    Xun Zhang1, Wanrong Bai1, Haoyang Cui2,*

    Energy Engineering, Vol.120, No.3, pp. 665-679, 2023, DOI:10.32604/ee.2023.020342 - 03 January 2023

    Abstract Optical Character Recognition (OCR) refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image. This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence (AI) algorithms, in which the different AI algorithms for OCR analysis are classified and reviewed. Firstly, the mechanisms and characteristics of artificial neural network-based OCR are summarized. Secondly, this paper explores machine learning-based OCR, and draws the conclusion that the algorithms available for this form of OCR are still in their infancy, with low generalization and More >

  • Open Access

    ARTICLE

    Visual News Ticker Surveillance Approach from Arabic Broadcast Streams

    Moeen Tayyab1, Ayyaz Hussain2,*, Usama Mir3, M. Aqeel Iqbal4, Muhammad Haneef5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6177-6193, 2023, DOI:10.32604/cmc.2023.034669 - 28 December 2022

    Abstract The news ticker is a common feature of many different news networks that display headlines and other information. News ticker recognition applications are highly valuable in e-business and news surveillance for media regulatory authorities. In this paper, we focus on the automatic Arabic Ticker Recognition system for the Al-Ekhbariya news channel. The primary emphasis of this research is on ticker recognition methods and storage schemes. To that end, the research is aimed at character-wise explicit segmentation using a semantic segmentation technique and words identification method. The proposed learning architecture considers the grouping of homogeneous-shaped classes. More >

  • Open Access

    REVIEW

    Arabic Optical Character Recognition: A Review

    Salah Alghyaline*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 1825-1861, 2023, DOI:10.32604/cmes.2022.024555 - 23 November 2022

    Abstract This study aims to review the latest contributions in Arabic Optical Character Recognition (OCR) during the last decade, which helps interested researchers know the existing techniques and extend or adapt them accordingly. The study describes the characteristics of the Arabic language, different types of OCR systems, different stages of the Arabic OCR system, the researcher’s contributions in each step, and the evaluation metrics for OCR. The study reviews the existing datasets for the Arabic OCR and their characteristics. Additionally, this study implemented some preprocessing and segmentation stages of Arabic OCR. The study compares the performance… More >

  • Open Access

    ARTICLE

    Vehicle Density Prediction in Low Quality Videos with Transformer Timeseries Prediction Model (TTPM)

    D. Suvitha*, M. Vijayalakshmi

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 873-894, 2023, DOI:10.32604/csse.2023.025189 - 01 June 2022

    Abstract Recent advancement in low-cost cameras has facilitated surveillance in various developing towns in India. The video obtained from such surveillance are of low quality. Still counting vehicles from such videos are necessity to avoid traffic congestion and allows drivers to plan their routes more precisely. On the other hand, detecting vehicles from such low quality videos are highly challenging with vision based methodologies. In this research a meticulous attempt is made to access low-quality videos to describe traffic in Salem town in India, which is mostly an un-attempted entity by most available sources. In this… More >

Displaying 1-10 on page 1 of 14. Per Page