Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (122)
  • Open Access

    ARTICLE

    Synthesis and Characterization of Phenyl Camellia oleifera Seed Oil Ester Plasticizing PVC

    Wenqing Xiao1,#, Yuhang Liu2,#, Yuxin He1, Qiaoguang Li1,*, Yongquan Li3,*

    Journal of Renewable Materials, Vol.12, No.3, pp. 615-628, 2024, DOI:10.32604/jrm.2023.046780

    Abstract Plasticizers are essential additives in the processing of polyvinyl chloride (PVC), with phthalate plasticizers being widely used. However, these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly, necessitating the exploration of eco-friendly bio-based alternatives. In this study, Camellia oleifera seed oil, a specialty resource in China, was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline) (AG-80) to synthesize Phenyl Camellia seed Oil Ester (PCSOE). PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations, with the conventional plasticizer dioctyl phthalate (DOP) serving as a control. Experimental results demonstrate that… More >

  • Open Access

    ARTICLE

    Influence of Poly (vinyl butyral) Modification on the Mechanical and Thermal Properties of Kevlar Fiber Reinforced Novolac epoxy/multiwalled carbon nanotube nanocomposites

    KAVITA*, R.K. TIWARI

    Journal of Polymer Materials, Vol.36, No.2, pp. 195-205, 2019, DOI:10.32381/JPM.2019.36.02.7

    Abstract The effect of poly (vinyl butyral) and acid functionalized multiwalled carbon nanotubes (f-MWCNT) on the thermal and mechanical performance of Kevlar fiber reinforced novolac epoxy nanocomposites was investigated and presented in this paper. Nanocomposite containing 1.5 wt. % poly (vinyl butyral) and 0.5 wt. % f-MWCNT exhibited best thermal and mechanical properties (except flexural strength) among all the nanocomposites reported here. It showed ~5%, 27% and 126 % improvement in tensile strength, young’s modulus and impact strength respectively as compared to the neat novolac epoxy Kevlar composite.Nanocomposite containing 0.5 wt. % f- MWCNT and 2 wt. % poly (vinyl butyral)… More >

  • Open Access

    ARTICLE

    Study of the Effect of Graphite Filler on the Vulcanizing Behavior and Properties of Nitrile Rubber and NBRPVC Blends

    D. MURALI MANOHAR1,*, B.C. CHAKRABORTY2, S. SHAMSHATH BEGUM3

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 91-107, 2020, DOI:10.32381/JPM.2020.37.1-2.7

    Abstract In search of improved materials for efficient shock and vibration mounts for machineries, graphite loaded NBR and NBR/PVC blend were made and investigated. The scorch time was seen to be reduced and vulcanization rate was enhanced due to graphite inclusion. Scanning electron microscopy images have shown homogenous dispersion of graphite powder. NBRgraphite showed a gradual increase in the hardness, tensile strength, Young’s modulus, and tear values with increasing graphite loading. In the case of NBR/PVC-graphite composition, a drop in the tensile strength and increase in the Young’ modulus and tear strength was observed. Various mathematical models were used to investigate… More >

  • Open Access

    ARTICLE

    Study of Optical, Electrical and Acoustical Properties of CuSO4 Doped Polyvinyl Pyrrolidone (PVP) based Polymer Solutions

    RAJEEV KUMAR

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 131-142, 2020, DOI:10.32381/JPM.2020.37.3-4.2

    Abstract The optical, electrical and acoustical properties of a polymer solution based on polyvinyl pyrrolidone (PVP) doped with different concentration of cupric sulphate (CuSO4 ) were studied.UVVIS spectroscopy results reflected that absorption increases in asymmetric manner and the absorption peak showed red shift with increasing Cu ions concentration. The optical band gap (direct and indirect) was found to decrease with increase in Cu ions concentration in the polymer due to increase in the density of localized states in the band-gap.The value of Urbach energy is also evaluated from the transmission spectra and the activation energies are also evaluated from the conductivity… More >

  • Open Access

    ARTICLE

    Effects of PEG200 on the Properties and Performance of PVDF Membranes in the Separation of MethanolWater Mixtures by Pervaporation

    DIPESHKUMAR D. KACHHADIYA, Z.V.P. MURTHY*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 49-61, 2021, DOI:10.32381/JPM.2021.38.1-2.5

    Abstract The conventional process for methanol-water separation like distillation consumes about 60 % of total energy. As an alternative, researchers have developed a membrane-based separation process for alcohol-water mixtures separation. However, there is a big challenge for researches to separate alcohol-water aqueous mixtures using a polymeric membrane because of swelling. In the present work, the aim is to separate methanol from water by pervaporation using polymeric membranes made up of polyvinylidenefluroide (PVDF) and polyethylene glycol (PEG200) modified PVDF membranes. The membranes were characterized by thermogravimetry analysis (TGA), field emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FTIR). A study on… More >

  • Open Access

    ARTICLE

    On the Engineering Properties of TPV derived from Hypalon, PP and a Compatibilizer (PMES-MA) prepared by Dynamic Vulcanization

    ASIS K. MANDAL1, DEBABRATA CHAKRABORTY2, MAHUYA DAS3, SAMIR K SIDDHANTA4,*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 21-34, 2021, DOI:10.32381/JPM.2021.38.1-2.3

    Abstract Elastomeric chlorosulfonated polyethylene (Hypalon) and thermoplastic polypropylene (PP) based thermoplastic Vulcanizates (TPVs) were prepared in presence of different doses of partial methyl ester of styrene-maleic anhydride copolymer (PMES-MA) as compatibilizer employing dynamic vulcanization technique. The mechanical analysis of the prepared TPVs exhibited significant improvements in stress at 25% modulus, ultimate tensile strength (UTS), and hardness values. FTIR studies revealed that a chemical interaction had taken place between hypalon and compatibilizer during the process of dynamic vulcanization which led to an enhancement of interfacial adhesion between them. The two-phase morphologies were clearly observed by scanning electron microscopic studies. The Tg values… More >

  • Open Access

    ARTICLE

    Recovery of Pure Water, Salicylic Acid Crystals, and Paracetamol using PVDF-MWCNT Membranes by Membrane Distillation-crystallization

    NIKHIL R. MENE1, SARITA KALLA1,*, Z.V.P. MURTHY1,*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 307-323, 2022, DOI:10.32381/JPM.2022.39.3-4.9

    Abstract Membrane distillation-crystallization (MDC) is presented as a novel technique in the treatment of waste concentrated water which produces valuable crystals along with pure water. In the present study, multi-walled carbon nanotubes (MWCNT)/polyvinylidene fluoride (PVDF) flat sheet membranes were prepared via the wet phase inversion method and applied in MDC for the treatment of pharmaceutical waste. The pure and modified membrane surface properties are characterized with the help of SEM, FTIR, and contact angle measurement. The present work reported the effect of MWCNT content and feed temperature on the MDCperformance and measured pure water flux and pharmaceutical compounds recovery. The observed… More >

  • Open Access

    ARTICLE

    Chitosan/PVA Films and Silver Nanoparticle Impregnated Nanofibrous Dressings for Evaluation of their Wound Healing Efficacy in Wistar Albino Rat Model

    SOBHA KOTA*, RATNAKUMARI ANANTHA, VAYUNANDANA RAO GOVADA, PRADEEP DUMPALA

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 285-303, 2023, DOI:10.32381/JPM.2023.40.3-4.10

    Abstract The exoskeleton of marine shrimp contains a natural, biocompatible polymer chitin, which is dumped as a waste. The study proposes the sustainable single-pot-extraction of chitosan from the waste and its use in the fabrication of wound-dressings, and thus leverage its piezoelectric, antioxidant, hypoglycaemic and medicinal properties in wound-healing. The Fourier transform infrared spectrum revealed that marine chitosan contains functional groups with N-O, O-H, and CO stretching. Scanning electron micrographs demonstrated the spherical and mesoporous structures of the extracted chitosan. X-ray diffraction analysis showed a semi-crystalline phase of chitosan particles with a mean size of 28.9 nm. The film prepared with… More >

  • Open Access

    ARTICLE

    Effect of Sulfuric Acid on the Physiochemical Properties of Chitosan-PVA Blend for Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb, PRAGYAN SENAPATIc, SWETAK ABHISEK MOHAPATRAb

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 89-109, 2022, DOI:10.32381/JPM.2022.39.1-2.6

    Abstract In this work, we have successfully cross-linked the different weight ratio of Chitosan-PVA blend with sulfuric acid. The effect of cross-linker on the properties of blends are studied by using different experimental technique. The cross-linked membrane provides higher ion exchange capacity due to the procurement of extra ionic hooping sites in the membrane. The compatibility of the blends are confirmed from the FTIR and DSC analysis. The crosslinking reaction fastening the phase transition behavior of the blends which reduces the glass transition temperature. The highly compatiblized cross-linked blend provides higher tensile strength and lower modulus at moderate temperature. The significant… More >

  • Open Access

    ARTICLE

    Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System

    Zhongping Liu1, Enhui Sun2,*, Jiahao Shi2, Lei Zhang2, Qi Wang1, Jiali Dong1

    Energy Engineering, Vol.121, No.4, pp. 913-932, 2024, DOI:10.32604/ee.2023.043973

    Abstract There is a growing need to explore the potential of coal-fired power plants (CFPPs) to enhance the utilization rate of wind power (wind) and photovoltaic power (PV) in the green energy field. This study developed a load regulation model for a multi-power generation system comprising wind, PV, and coal energy storage using real-world data. The power supply process was divided into eight fundamental load regulation scenarios, elucidating the influence of each scenario on load regulation. Within the framework of the multi-power generation system with the wind (50 MW) and PV (50 MW) alongside a CFPP (330 MW), a lithium-iron phosphate… More > Graphic Abstract

    Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System

Displaying 1-10 on page 1 of 122. Per Page