Jun Wang1,2, Linxi Zhang1,2, Hao Zhang1, Funan Peng1,*, Mohammed A. El-Meligy3, Mohamed Sharaf3, Qiang Fu1
CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1281-1299, 2024, DOI:10.32604/cmc.2024.048495
Abstract The existing algorithms for solving multi-objective optimization problems fall into three main categories: Decomposition-based, dominance-based, and indicator-based. Traditional multi-objective optimization problems mainly focus on objectives, treating decision variables as a total variable to solve the problem without considering the critical role of decision variables in objective optimization. As seen, a variety of decision variable grouping algorithms have been proposed. However, these algorithms are relatively broad for the changes of most decision variables in the evolution process and are time-consuming in the process of finding the Pareto frontier. To solve these problems, a multi-objective optimization algorithm… More >