Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Pavement Crack Detection Based on Star-YOLO11

    Jiang Mi1, Zhijian Gan1, Pengliu Tan2,*, Xin Chang2, Zhi Wang2, Haisheng Xie2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.069348 - 10 November 2025

    Abstract In response to the challenges in highway pavement distress detection, such as multiple defect categories, difficulties in feature extraction for different damage types, and slow identification speeds, this paper proposes an enhanced pavement crack detection model named Star-YOLO11. This improved algorithm modifies the YOLO11 architecture by substituting the original C3k2 backbone network with a Star-s50 feature extraction network. The enhanced structure adjusts the number of stacked layers in the StarBlock module to optimize detection accuracy and improve model efficiency. To enhance the accuracy of pavement crack detection and improve model efficiency, three key modifications to… More >

  • Open Access

    ARTICLE

    Investigation of Attention Mechanism-Enhanced Method for the Detection of Pavement Cracks

    Tao Jin1,*, Siqi Gu1, Zhekun Shou1, Hong Shi2, Min Zhang2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 903-918, 2025, DOI:10.32604/sdhm.2025.063887 - 30 June 2025

    Abstract The traditional You Only Look Once (YOLO) series network models often fail to extract satisfactory features for road detection, due to the limited number of defect images in the dataset. Additionally, most open-source road crack datasets contain idealized cracks that are not suitable for detecting early-stage pavement cracks with fine widths and subtle features. To address these issues, this study collected a large number of original road surface images using road detection vehicles. A large-capacity crack dataset was then constructed, with various shapes of cracks categorized as either cracks or fractures. To improve the training… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Pavement Crack Detection Using Mask R-CNN and Vision Transformer Model

    Shorouq Alshawabkeh, Li Wu*, Daojun Dong, Yao Cheng, Liping Li

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 561-577, 2025, DOI:10.32604/cmc.2024.057213 - 03 January 2025

    Abstract Detecting pavement cracks is critical for road safety and infrastructure management. Traditional methods, relying on manual inspection and basic image processing, are time-consuming and prone to errors. Recent deep-learning (DL) methods automate crack detection, but many still struggle with variable crack patterns and environmental conditions. This study aims to address these limitations by introducing the MaskerTransformer, a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network (Mask R-CNN) with the global contextual awareness of Vision Transformer (ViT). The research focuses on leveraging the strengths of both architectures… More >

  • Open Access

    ARTICLE

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

    Zhong Qu1,*, Guoqing Mu1, Bin Yuan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 255-273, 2024, DOI:10.32604/cmes.2024.048175 - 16 April 2024

    Abstract Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning, with convolutional neural networks (CNN) playing an important role in this field. However, as the performance of crack detection in cement pavement improves, the depth and width of the network structure are significantly increased, which necessitates more computing power and storage space. This limitation hampers the practical implementation of crack detection models on various platforms, particularly portable devices like small mobile devices. To solve these problems, we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature… More > Graphic Abstract

    A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection

  • Open Access

    ARTICLE

    Automated Pavement Crack Detection Using Deep Feature Selection and Whale Optimization Algorithm

    Shorouq Alshawabkeh, Li Wu*, Daojun Dong, Yao Cheng, Liping Li, Mohammad Alanaqreh

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 63-77, 2023, DOI:10.32604/cmc.2023.042183 - 31 October 2023

    Abstract Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses. Recent advancements in deep learning (DL) techniques have shown promising results in detecting pavement cracks; however, the selection of relevant features for classification remains challenging. In this study, we propose a new approach for pavement crack detection that integrates deep learning for feature extraction, the whale optimization algorithm (WOA) for feature selection, and random forest (RF) for classification. The performance of the models was evaluated using accuracy, recall, precision, F1 score, and area under the receiver operating characteristic curve (AUC).… More >

Displaying 1-10 on page 1 of 5. Per Page