Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    PROCEEDINGS

    Extension of Ordinary State-Based Peridynamic Model for Nonlinear Analysis

    Mengnan Zhang1,*, Fucheng Tian1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09593

    Abstract Peridynamic is a nonlocal theory that uses integral forms of governing equations, making it suitable for describing objects with discontinuous states such as cracks. After more than two decades of development, peridynamic has been effectively applied to numerous solid mechanics studies. However, in the field of ordinary state-based peridynamic modeling nonlinear deformation, a more comprehensive model that can establish a general connection with continuum mechanics and allow for the selection of different influence functions is still lacking. As a consequence, a further extension to existing models is promising, and it represents a substantial addition to the current peridynamic model. In… More >

  • Open Access

    PROCEEDINGS

    Peridynamic Analysis on Failure of Cantilever Beam Subjected to a Concentrated Force and Uniform Distributed Traction

    Zeyuan Zhou1, Ming Yu1, Zaixing Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09135

    Abstract Peridynamics (PD) is a reformulation of the classical continuum mechanics. Its core consists in that a weighted integral of relative displacement over a spatial domain is used instead of the spatial derivative of displacement in governing equations of deformation. Based on an improved technique of exerting traction on boundary surface, an improved peridynamic motion equation has been proposed within the framework of the peridynamic(PD) theory. It is more natural and easier to deal with boundary conditions for the elastic deformation and fracture analysis. Under the enhancement effect in the constructed transfer functions of boundary traction, there is not needed the… More >

  • Open Access

    PROCEEDINGS

    A Thermo-Chemo-Mechanically Coupled Peridynamic Model for Investigating the Crack Behaviors of Deformable Solids with Heat Conduction, Species Diffusion, and Chemical Reactions

    Yu Xiang1, Bao Qin2, Zheng Zhong1,*, Zhenjun Jiao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09088

    Abstract A thermo-chemo-mechanically (TCM) coupled peridynamic (PD) model is proposed to analyze the crack behavior in solids considering heat conduction, species diffusion, and chemical reactions. A PD theoretical framework is established based on non-equilibrium thermodynamics. The influences of species diffusion and chemical reactions on the Helmholtz free energy density and the subsequent formation and propagation of cracks are distinguished by introducing the concentration of diffusive species and the extent of the chemical reaction. Furthermore, inter-physics coupling coefficients are calibrated by equating the corresponding field in the PD model to the continuum mechanics under the same condition. The cases of vacancy redistribution… More >

  • Open Access

    PROCEEDINGS

    Elastic Bimaterial Interface Fracture Analysis by using Peridynamic Theory

    Heng Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09243

    Abstract Interface fracture is the main failure mode of bonded materials and structures, its theoretical and numerical analysis have caused wide attentions. Peridynamics is a nonlocal meshfree method, which has a great advantage in materials and structures failure analysis. In our recent works [1-3], a general peridynamicsbased framework for elastic bimaterial interface fracture problem analysis was established. The peridynamic interface model with the thermal effect was proposed, the nonlocal form of interface bond force was given. The energy release rate and mode mixity of the interface crack were computed with the peridynamic virtual crack closure technique (PD_VCCT). The extended critical energy… More >

  • Open Access

    PROCEEDINGS

    A Cosserat Bond-Based Correspondence Model

    Zhuang Chen1, Xihua Chu1,*, Diansen Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09057

    Abstract In this study, we develop a Cosserat bond-based correspondence model(Cosserat BBCM) based on the bondbased correspondence model (BBCM)[1]. BBCM is a generalized bond-based peridynamic model, where the peridynamic pair-wise force (PD force) is calculated by classical constitutive equations through the relation between PD force and stress. In our previous study, we develop the Cosserat peridynamic model (CPM) to investigate the microstructure-related crack growth behavior [2, 3]. But the interactions between material particles are represented by PD forces and moments instead of the stress and couple stress. Due to this divergence, the Cosserat constitutive model such as the elastoplastic Cosserat model… More >

  • Open Access

    PROCEEDINGS

    A Coupled Hygro-Thermo-Mechanical Bond-Based Cosserat Peridynamic Porous Media Model for Heated Fracture of Concrete

    Jiaming Zhang1, Xihua Chu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09055

    Abstract This paper presents a fully coupled hygro-thermo-mechanical bond-based Cosserat peridynamic porous media model for concrete at high temperature [1-3]. The model enables the problem of Poisson's ratio limitation to be relieved and the effect of cement particle size and its independent micro-rotation to be taken into account [4]. A multi-rate explicit integration strategy is proposed, which allows this complex multi-field fully coupled governing equation to be well solved. Numerical simulations mainly focus on the terms of temperature, water vapour pressure and damage level to verify the validity of the model [5-9]. And they additionally demonstrate the effect of cement particle… More >

  • Open Access

    PROCEEDINGS

    A Peridynamics-Based Finite Element Method (PeriFEM) and Its Implementation in Commercial FEM Software for Brittle Fractures

    Fei Han1,*, Zhibin Li1, Jianyu Zhang1, Zhiying Liu1, Chen Yao1, Wenping Han1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09023

    Abstract The classical finite element method has been successfully applied to many engineering problems but not to cases with space discontinuity. A peridynamics-based finite element method (PeriFEM) is presented according to the principle of minimum potential energy, which enables discontinuity. First, the integral domain of peridynamics is reconstructed, and a new type of element called peridynamic element (PE) is defined. Although PEs are generated by the continuous elements (CEs) of classical FEM, they do not affect each other. Then, spatial discretization is performed based on PEs and CEs, and the linear equations about nodal displacement are established according to the principle… More >

  • Open Access

    PROCEEDINGS

    Study of Multi-Group Neutron Diffusion in Nuclear Fuel Pellet based on Peridynamics

    Dahua Hao1, Qiqing Liu1, Yin Yu1, Yile Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09301

    Abstract In this study, a method for solving multigroup neutron diffusion equations for nuclear fuel pellets is proposed based on the bond-based PeriDynamic (PD) theory. Firstly, adopting the idea of non-local diffusion, the PD neutron diffusion coefficient is defined and calibrated through the equality of potential with the traditional neutron diffusion coefficient. Comparing the calculation results of the neutron flux distribution of the single-group neutron diffusion by the PD method and the traditional finite element method, the feasibility of the method is verified. Secondly, apply the leakage term in single-group to multigroup and consider the scattering term between different energy groups.… More >

  • Open Access

    PROCEEDINGS

    Micro-CT Based Meso-Scale Modeling and Peridynamics Analysis for Short-Fiber Composites

    Zhiyang Yao1, Shuling Wang1, Yin Yu1, Yile Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09298

    Abstract This study presents a method for modeling and analyzing the microstructure of short-fiber composites by using state-based PeriDynamic (PD). The micro-structure of short-fiber composites is obtained from MicroCT scanning which provides non-uniformly discretized meshes of short-fiber’s surface profile. In order to obtain the uniformly discretized PD model, a new layering algorithm is proposed to reconstruct the shortfiber microstructure. Furthermore, considering the anisotropy of short-fiber, a clustering algorithm based on machine learning is introduced to identify fibers and calculate their orientations. The PD interaction domain of a material point on the boundary is incomplete, it can be complemented by searching material… More >

  • Open Access

    PROCEEDINGS

    Dynamic Analysis of Stiffened Plates by the Peridynamic Mindlin Shell

    Jin Han1, Qi Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09848

    Abstract In this paper, we extend the Reissner-Mindlin shell theory based on peridynamics method proposed in [1] to the stiffened plate and explore its application to engineering problems, several examples are given to verify its effectiveness in the dynamic analysis. The coupling method is used in this paper to model the stiffened plate. The plate and the stiffener are treated as two independent shell to calculate the velocity and acceleration respectively, then the interaction between two parts of the stiffened plate is added at the coupling particle to satisfy the continuity condition. The non-local peridynamics theory of solids provides an integral… More >

Displaying 11-20 on page 2 of 59. Per Page