Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ARTICLE

    Accurate Study and Evaluation of Small PV Power Generation System Based on Specific Geographical Location

    Lian Zhang1,2,3,5,*, Zijian Chen2, Heng Zhang3, Zenghong Ma4, Baowen Cao1, Lihong Song5

    Energy Engineering, Vol.117, No.6, pp. 453-470, 2020, DOI:10.32604/EE.2020.013276

    Abstract As an important new energy, solar energy has been extensively used in the world and different types of solar energy systems have been used in different fields. The photovoltaic power generation system has obvious advantage and high stability compared with other energy systems. Furthermore, the small-scale photovoltaic power generation system has a wider application in the field of power generation due to the performance of high efficiency. In this paper, the optimization research and system evaluation of small-scale photovoltaic power system have been studied in different areas by simulation and experimental methods. Based on the determination of photovoltaic model system,… More >

  • Open Access

    ARTICLE

    Design of Nonlinear Uncertainty Controller for Grid-Tied Solar Photovoltaic System Using Sliding Mode Control

    D. Menaga1, M. Premkumar2, R. Sowmya1,*, S. Narasimman3

    Energy Engineering, Vol.117, No.6, pp. 481-495, 2020, DOI:10.32604/EE.2020.013282

    Abstract The proposed controller accompanies with different sliding surfaces. To understand maximum power point extraction as opposed to nonlinear uncertainties and unknown disturbance of a grid-connected photovoltaic system to various control inputs (ud, uq) is designed. To extract maximum power from a solar array and maintain unity power flow in a grid by controlling the voltage across the dclink capacitor (Vpvdc) and reactive current (iq). A multiple input-output with multiple uncertainty constraints have considered designing proposed sliding mode controllers to validated their robustness performance. An innovative controller verifies uncertain inputs, constant and changes in irradiances, and temperature of the photo-voltaic system.… More >

  • Open Access

    ARTICLE

    New Correlations for Determination of Optimum Slope Angle of Solar Collectors

    Ali Khosravi1,*, Oscar Ricardo Sandoval Rodriguez2, Behnam Talebjedi1, Timo Laukkanen1, Juan Jose Garcia Pabon3, Mamdouh El Haj Assad4

    Energy Engineering, Vol.117, No.5, pp. 249-265, 2020, DOI:10.32604/EE.2020.011024

    Abstract The energy coming from solar radiation could be harvested and transformed into electricity through the use of solar-thermal power generation and photovoltaic (PV) power generation. Placement of solar collectors (thermal and photovoltaic) affects the amount of incoming radiation and the absorption rate. In this research, new correlations for finding the monthly optimum slope angle (OSA) on flat-plate collectors are proposed. Twelve equations are developed to calculate the monthly OSA by the linear regression model, for the northern and the southern hemisphere stations from 15° to 55° and –20° to –45°, respectively. Also, a new equation for calculating the yearly tilt… More >

  • Open Access

    ARTICLE

    Real-Time Thermomechanical Modeling of PV Cell Fabrication via a POD-Trained RBF Interpolation Network

    Arka Das1, Anthony Khoury1, Eduardo Divo1, *, Victor Huayamave1, Andres Ceballos2, Ron Eaglin2, Alain Kassab3, Adam Payne4, Vijay Yelundur4, Hubert Seigneur5

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 757-777, 2020, DOI:10.32604/cmes.2020.08164

    Abstract This paper presents a numerical reduced order model framework to simulate the physics of the thermomechanical processes that occur during c-Si photovoltaic (PV) cell fabrication. A response surface based on a radial basis function (RBF) interpolation network trained by a Proper Orthogonal Decomposition (POD) of the solution fields is developed for fast and accurate approximations of thermal loading conditions on PV cells during the fabrication processes. The outcome is a stand-alone computational tool that provides, in real time, the quantitative and qualitative thermomechanical response as a function of user-controlled input parameters for fabrication processes with the precision of 3D finite… More >

  • Open Access

    ABSTRACT

    Thin Film Formation and Photovoltaic Application of Transition Metal Dichalcogenides By Liquid Exfoliation

    Seung Kyo Lee, Dongil Chu, Eun Kyu Kim*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 93-93, 2019, DOI:10.32604/icces.2019.04995

    Abstract We studied on a liquid exfoliation technique for the robust production of transition metal dichalcogenides (TMDC) thin films, because this technique has advantages for residue-free, large-scale, and low-cost fabrication. During the process of liquid exfoliation, a mixture of DI water and ethanol was used to obtain higher concentrations of TMDC flakes in the solution compared to that in water-based solution. The film thicknesses were controlled by a two-step centrifuge process to analyze the influence on the photovoltaic properties with gold/TMDC/silicon geometry. Based on ultraviolet photoelectron spectroscopy measurement results, the energy band diagram of the devices using MoS2 and WS2 films… More >

  • Open Access

    REVIEW

    Nanocellulose-Enabled Electronics, Energy Harvesting Devices, Smart Materials and Sensors: A Review

    Ronald Sabo1*, Aleksey Yermakov2, Chiu Tai Law3, Rani Elhajjar4

    Journal of Renewable Materials, Vol.4, No.5, pp. 297-312, 2016, DOI:10.7569/JRM.2016.634114

    Abstract Cellulose nanomaterials have a number of interesting and unique properties that make them well-suited for use in electronics applications such as energy harvesting devices, actuators and sensors. Cellulose nanofibrils and nanocrystals have good mechanical properties, high transparency, and low coefficient of thermal expansion, among other properties that facilitate both active and inactive roles in electronics and related devices. For example, these nanomaterials have been demonstrated to operate as substrates for flexible electronics and displays, to improve the efficiency of photovoltaics, to work as a component of magnetostrictive composites and to act as a suitable lithium ion battery separator membrane. A… More >

  • Open Access

    ARTICLE

    Optimizing the Design of PV Solar Reverse Osmosis Unit (RO/PV) by using Genetic Algorithms for Abu Dhabi Climate

    K. Bououni1, T. Jaber1, S. Elbehissy1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 127-141, 2017, DOI:10.3970/fdmp.2017.013.127

    Abstract The economic progress in the United Arab Emirates (UAE) induces to a significant increase in the demand for agricultural development. In Emirates the majority of the farms are irrigated by underground water, characterized by a high level of salinity. Liwa, Al Ain and Al Khatem areas are suffering from high water well salinity that exceeds 20,000 ppm. This work focuses on this problem and suggests a suitable solution allowing the use of renewable energy (Solar Photovoltaic) to drive RO desalination units. An optimal design of RO/PV unit adapted to a typical farm in Abu Dhabi was suggested using a model… More >

  • Open Access

    ARTICLE

    Characterization of Undoped Spray-Deposited ZnO Thin Films of Photovoltaic Applications

    ShadiaJ. Ikhmayies1, Naseem M. Abu El-Haija1, Riyad N. Ahmad-Bitar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.2, pp. 165-178, 2010, DOI:10.3970/fdmp.2010.006.165

    Abstract Undoped polycrystalline ZnO thin films were produced on glass substrates at a substrate temperature Ts= 450 C by the spray pyrolysis (SP) technique. The films were characterized by analyzing their I-V curves, transmittance, X-ray diffractograms (XRD) and their scanning electron microscope (SEM) images. The I-V plots are all linear and the resistivity was found to be about 200W.cm. The transmittance in the visible and near infrared regions is as high as 85% which is suitable for solar cell applications. The absorption coefficient which is deduced from the transmittance measurements is continuously increasing with the photon's energy and it rapidly increases… More >

Displaying 91-100 on page 10 of 98. Per Page