Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Bio-Based Rigid Polyurethane Foams for Cryogenic Insulation

    Laima Vevere*, Beatrise Sture, Vladimir Yakushin, Mikelis Kirpluks, Ugis Cabulis

    Journal of Renewable Materials, Vol.12, No.3, pp. 585-602, 2024, DOI:10.32604/jrm.2024.047350

    Abstract Cryogenic insulation material rigid polyurethane (PU) foams were developed using bio-based and recycled feedstock. Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations. The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties. Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37–40 kg/m3. The developed rigid PU foams had… More > Graphic Abstract

    Bio-Based Rigid Polyurethane Foams for Cryogenic Insulation

  • Open Access

    ARTICLE

    Advances of Polyurethane Foams Derived from Lignin

    Hyoe Hatakeyama1,*, Tatsuko Hatakeyama2

    Journal of Renewable Materials, Vol.1, No.2, pp. 113-123, 2013, DOI:10.7569/JRM.2012.634111

    Abstract Lignin and saccharides are two major components of plants. Huge amounts of plant residues are obtained as by-products of large-scale industries, such as pulp and paper, bio-fuel and the food industry. In this paper, preparation of polyurethane (PU) foam directly from various kinds of industrial lignin and molasses, which have scarcely been utilized, is summarized based on our results obtained by recent investigation. A onestep reaction using hydroxyl groups of plant materials as an active site makes it possible to produce a wide variety of PU, such as foams, sheets, gels and composite matrix. In this paper, PU foams receive… More >

  • Open Access

    ARTICLE

    Dynamic Foaming Behaviour of Polyurethane vs Tannin/ Furanic Foams

    M.C. Basso1,2, A. Pizzi1,3,*, A. Celzard4

    Journal of Renewable Materials, Vol.1, No.4, pp. 273-278, 2013, DOI:10.7569/JRM.2013.634125

    Abstract : Simultaneously monitoring the variation of temperature, foam rising rate, internal foam pressure and dielectric polarisation, the latter being a direct measure of setting and curing of a thermosetting foam, has allowed the comparison of the dynamic variation of determinant parameters of polyurethane foams and of tannin/furanic foams of different formulation and characteristics. This monitoring provides a good description of the process and possible characteristics of the prepared foam and constitutes an invaluable tool for foam formulation. Such a comparison indicates that fundamental differences, but also similarities, exist between the foaming processes of the two classes of foam. The dynamics… More >

  • Open Access

    ARTICLE

    Photodegradation of Polyurethane Foam Obtained from Renewable Resource–Pulp Production Byproducts

    A. Paberza*, L. Stiebra, U. Cabulis

    Journal of Renewable Materials, Vol.3, No.1, pp. 19-27, 2015, DOI:10.7569/JRM.2014.634138

    Abstract Rigid polyurethane foams were obtained from pulp production byproducts. Three different polyols were used—tall oil polyol, lignopolyol and commercially available polyol for comparison. The obtained rigid polyurethane foams underwent photodegradation at 60°C temperature and at 0.89 W/m2 intensity of UV light radiation up to 1000 h. Changes in chemical structure were observed by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy was used to study changes in cell morphology. Spectrophotometery was used to determine yellowing of the foams. Results showed that the thickness of degraded layer for rigid polyurethane foams obtained from pulp production byproducts was ~25% less than for… More >

  • Open Access

    ARTICLE

    Flexible Polyurethane Foams Modifi ed with New Bio-Polyol Based on Rapeseed Oil

    Sławomir Michałowski, Aleksander Prociak*

    Journal of Renewable Materials, Vol.3, No.1, pp. 14-18, 2015, DOI:10.7569/JRM.2014.634131

    Abstract This article describes the effects of the modifi cation of polyurethane system with rapeseed oil-based polyol on the cell structure and physical-mechanical properties of conventional fl exible polyurethane foams. The foams were prepared by substituting a part of the petrochemical polyether-polyols mixture with the bio-polyol based on rapeseed oil. Selected physical-mechanical properties of these foams were examined and compared to the properties of reference foam. The properties such as apparent density, resilience, comfort factor and stress-strain characteristics were analyzed in compression tests. It was found that the modifi cation of polyurethane formulation with rapeseed oil-based polyol improves the selected properties… More >

  • Open Access

    ARTICLE

    Self-Blowing Non-Isocyanate Polyurethane Foams Based on Hydrolysable Tannins

    Elham Azadeh1, Xinyi Chen2, Antonio Pizzi2,*, Christine Gérardin1, Philip Gérardin1, Hisham Essawy3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3217-3227, 2022, DOI:10.32604/jrm.2022.022740

    Abstract Non-isocyanate polyurethane (NIPU) foams using a hydrolysable tannin, also vulgarly called tannic acid, namely here commercial chestnut wood tannin extract was prepared. Compression strength did not appear to depend on the foam apparent density while the formulation composition of the NIPU foams has been shown to be more determinant. These NIPU foams appeared to be self-extinguishing once the high temperature flame is removed. The ignition time gave encouraging results but for improved fire resistance the foams may need some fire-retardant addition. FTIR spectrometry showed the formation of non-isocyanate urethane linkages. Thermogravimetric analysis indicated a good thermal resistance of these foams,… More >

  • Open Access

    ARTICLE

    Dielectric Permittivity of Rigid Rapeseed Oil Polyol Polyurethane Biofoams and Petrochemical Foams at Low Frequencies

    Ilze Beverte1,*, Vairis Shtrauss1, Aldis Kalpinsh1, Uldis Lomanovskis1, Ugis Cabulis2, Irina Sevastyanova2, Sergejs Gaidukovs3

    Journal of Renewable Materials, Vol.8, No.9, pp. 1151-1170, 2020, DOI:10.32604/jrm.2020.010215

    Abstract Early investigations of dielectric permittivity of rigid polyurethane foams at low frequencies were made on petrochemical-origin foams, mainly by means of parallel plate capacitors. In the present investigation biopolyol was synthesized from Latvia-grown rapeseeds’ oil by the transesterification method with triethanolamine, in an environmentally friendly process, without emission of harmful substances, at temperatures 175°C ± 5°C. Rigid, closed-cell rapeseed oil polyol polyurethane biofoams and petrochemical foams were made ensuring content of the renewable rapeseed oil polyol in ready foams 27 wt.%–29 wt.%. Dielectric permittivity of the polyurethane foams and the underlying monolithic petrochemical-origin polyurethane and biopolyurethane was measured with a… More >

  • Open Access

    Synthesis of Novel Biobased Polyol via Thiol-Ene Chemistry for Rigid Polyurethane Foams

    N. Elbers1, C. K. Ranaweera1, M. Ionescu2, X. Wan2, P. K. Kahol3, Ram K. Gupta1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 74-83, 2017, DOI:10.7569/JRM.2017.634137

    Abstract The objective of this research is to prepare rigid polyurethane (PU) foams from α-phellandrene, a biobased compound. Two types of polyols were synthesized by reacting α-phellandrene with 2-mercaptoethanol and α-thioglycerol via thiol-ene chemistry route. The completion of the reaction was identified by using FTIR. PU foams from α-phellandrene polyols and commercial polyol were compared with regard to foam characteristics and properties. All the PU foams showed apparent density of 28–39 kg/m3 with closed-cell content above 90%. The highest glass transition temperature of 229 °C and compressive strength of 220 kPa were observed for the polyol synthesized by reacting α-phellandrene and… More >

  • Open Access

    Biobased Polyols Using Thiol-Ene Chemistry for Rigid Polyurethane Foams with Enhanced Flame-Retardant Properties

    C. K. Ranaweera1, M. Ionescu2, N. Bilic2, X. Wan2, P. K. Kahol3, Ram K. Gupta1,2*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 1-12, 2017, DOI:10.7569/JRM.2017.634105

    Abstract Biobased polyol was synthesized using 1-thioglycerol and limonene, an extract of orange peel, via thiol-ene chemistry as an alternative to petrochemical-based polyol for preparation of rigid polyurethane foams (RPFs). Fire-retardant polyurethane foams were prepared by addition of different amounts of dimethyl methyl phosphonate (DMMP) in the polyol. The effect of DMMP on the properties of RPFs was studied. All the biobased RPFs maintained a regular cell structure with uniform cell distribution and over 90% of closed cell. The RPFs showed excellent compressive strength of ~230 kPa without addition of DMMP. These RPFs almost retained their specific compressive strength even when… More >

  • Open Access

    ARTICLE

    Steam Exploded Peanut Shell Fiber as the Filler in the Rigid Polyurethane Foams

    Zehui Ju1, Qian He1, Tianyi Zhan1, Haiyang Zhang1,*, Lin Sun1, Lu Hong1, Xinyi Shi2, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.7, No.11, pp. 1077-1091, 2019, DOI:10.32604/jrm.2019.07525

    Abstract In this study, steam exploded peanut shell fibers (SE-PSFs) were utilized to fabricate with rigid polyurethane foam (RPUF) in order to improve sound absorption performance and hydrothermal weather resistance. Optimized method of SE treatment, RPUF preparation and flame retardant treatment were selected to prepare SE-PSF/RPUF composites in this experiment. Physical and mechanical properties including density, water absorption capacity, thickness swelling rate, compressive strength, thermal conductivity and average sound absorption coefficient of SE-PSF/RPUF were investigated and compared with the control (PRUF). The results showed that the density, water absorption capacity, thickness swelling rate and thermal conductivity showed an increasing trend with… More >

Displaying 1-10 on page 1 of 17. Per Page