Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Viscoelastic and Thermal Properties of Polyurethane Foams Obtained from Renewable and Recyclable Components

    S. Gaidukovs1,2,*, G. Gaidukova2, A. Ivdre1,3, U. Cabulis3

    Journal of Renewable Materials, Vol.6, No.7, pp. 755-763, 2018, DOI:10.7569/JRM.2018.634112

    Abstract This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foams from biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate) (PET) were used to synthesize PU polyols. Addition of adipic acid (ADA) to polyol resulted in improved thermal and viscoelastic properties of foam materials. ADA content was varied from 1 to 6 wt%. Results of the dynamic mechanical spectra indicate an increase of the storage modulus E′ and the loss modulus E″ in the whole temperature range for specimens with higher loading of ADA. In addition, damping factor shifted to higher… More >

  • Open Access

    ARTICLE

    Variation of Physical Properties of Rigid Polyurethane Foams Synthesized from Renewable Sources with Different Commercial Catalysts

    Daniel Brenes-Granados1, Jorge M. Cubero-Sesin1,2, Felipe Orozco Gutiérrez3, Jose Vega-Baudrit3, Rodolfo Gonzalez-Paz3*

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 280-289, 2017, DOI:10.7569/JRM.2017.634118

    Abstract In this work, rigid polyurethane foams were synthesized from renewable sources using different catalysts to study their effect on the mechanical, thermal, chemical and surface properties of the foams. A commercial foam pattern was used as the reference pattern to compare the aforementioned properties. Concentrations of the commercial catalysts were optimized to obtain foams with similar mechanical properties to the commercial foam. Morphological characterization of the foams was performed by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy was employed to investigate the characteristic functional groups. Thermal characterization was performed by means of differential scanning calorimetry (DSC) and thermogravimetric… More >

  • Open Access

    ARTICLE

    Rapeseed Oil as Feedstock for High Functionality Polyol Synthesis

    M. Kirpluks1*, D. Kalnbunde1, Z. Walterova2, U. Cabulis1

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 258-270, 2017, DOI:10.7569/JRM.2017.634116

    Abstract In this study, polyols with high average functionality were synthesized from a renewable resource, rapeseed oil, as raw material for rigid PU foam production. A well-known method of rapeseed oil fatty acid double bond epoxidation was used to introduce oxirane rings into rapeseed oil structure. The temperature influence on epoxidation reaction conversion rate was studied by volumetric and FTIR spectra analysis. After epoxidation of rapeseed oil, an oxirane ring-opening reaction was carried out to obtain high functionality polyols. Diethylene glycol, a conventional oxirane ring-opening reagent, was compared to amine-based polyfunctional alcohols, diethanolamine and triethanolamine. The introduction of tertiary amine groups… More >

  • Open Access

    ARTICLE

    Polyols Based on Poly(ethylene terephthalate) and Tall Oil: Perspectives for Synthesis and Production of Rigid Polyurethane Foams

    A. Ivdre1*, G.D. Soto2, U. Cabulis1

    Journal of Renewable Materials, Vol.4, No.4, pp. 285-293, 2016, DOI:10.7569/JRM.2016.634122

    Abstract This study presents the synthesis of novel polyols made from tall oil (TO) and poly(ethylene terephthalate) (PET) with different TO/PET molar ratios. Rigid polyurethane foams based on these synthesized polyols were obtained and characterized to evaluate polyols’ suitability for the development of light materials with insulating properties. The effect of TO/PET molar ratios on the physical, morphological and mechanical properties of the obtained foams, as well as their thermal insulation characteristics, were evaluated. Increasing amounts of PET in polyurethane foams resulted in higher compression strength and closed cell content, while water absorption was not affected. Results indicated that certain TO/PET… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Glycerol

    Facundo I. Altuna1, Borja Fernández-d’Arlas2, M. Angeles Corcuera2, Arantxa Eceiza2, Mirta I. Aranguren3, Pablo M. Stefani3*

    Journal of Renewable Materials, Vol.4, No.4, pp. 275-284, 2016, DOI:10.7569/JRM.2016.634120

    Abstract Mixtures of biomass-derived polyols were used to synthesize rigid polyurethane (PU) foams. A commercial polymerized methylene diphenyl diisocyanate (pMDI) was used as crosslinker, and distilled water served as foaming agent. The morphology and mechanical properties of foams with different glycerol and water contents were compared in order to evaluate the most suitable formulations. The rigid foams with higher water contents had larger and more anisotropic cells, explaining their lower density. Compressive moduli ranged from about 2.5 MPa to above 20 MPa and collapse stresses from 55 kPa to more than 1 MPa for densities between 54 and 143 kg/m3. Densification… More >

  • Open Access

    ARTICLE

    Mechanical and Thermal Properties of High-Density Rigid Polyurethane Foams from Renewable Resources

    M. Kirpluks1*, U. Cabulis1, A. Ivdre1, M. Kuranska2, M. Zieleniewska3, M. Auguscik3

    Journal of Renewable Materials, Vol.4, No.1, pp. 86-100, 2016, DOI:10.7569/JRM.2015.634132

    Abstract The most common sustainable solution for polyurethane (PU) materials is their production using renewable resources. Polyols derived from biomass and recycled polymers are the most promising way to do that. This study compares five different sustainable polyols as a possible raw material for production of highdensity rigid PU foams for automotive application. The goal of our study was to show that biobased polyols are a suitable replacement for polyols derived from petrochemical products. The influence of the chemical structure of polyols on the PU polymer matrix and foam properties was investigated. Two sources of PU raw material feedstock were studied:… More >

  • Open Access

    ARTICLE

    Influence of Isocyanate Index on Selected Properties of Flexible Polyurethane Foams Modified with Various Bio-Components

    Aleksander Prociak*, Elźbieta Malewska, Szymon Bąk

    Journal of Renewable Materials, Vol.4, No.1, pp. 78-85, 2016, DOI:10.7569/JRM.2015.634129

    Abstract In this article, the results of the foaming process analysis of fl exible polyurethane with different isocyanate indexes are presented. Two types of flexible polyurethane foams (FPURF) were obtained: (1) by using petrochemical components and a rapeseed-oil-based polyol (used in the amount of 20 wt%), (2) by using petrochemical components and cellulose as a natural fi ller in the amount of 3 php (per hundred parts of polyol). The characteristic parameters of the foaming process, such as the foam’s growth velocity, the core temperature and dielectric polarization, were measured using a Foamat device. Moreover, the following properties of flexible polyurethane… More >

Displaying 11-20 on page 2 of 17. Per Page