Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    Investigation on Purine Corrosion Inhibitions via Quantum Chemical Calculation

    Fengjuan Wang1,2, Shengping Wu1,2,*, Jinyang Jiang1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 1-10, 2018, DOI: 10.31614/cmes.2018.03834

    Abstract Corrosion inhibition performances of three purine derivatives were investigated systematically by employing DFT and molecular modeling. The relationship between macroscopic inhibition efficiency and quantum chemical properties was discussed from multiple perspectives, based on frontier orbital theory, and Fukui function theories. Comparative experimental and theoretical studies were taken, indicating the inhibition efficiency could be analyzed in the order of guanine <2,6-diaminopurine <2,6-dithiopurine. The sulphur atom (S5) was validated to be the most susceptible site for electrophile via quantitative surface analysis. More >

  • Open Access

    ARTICLE

    Solution of Two-dimensional Linear and Nonlinear Unsteady Schrödinger Equation using “Quantum Hydrodynamics” Formulation with a MLPG Collocation Method

    V. C. Loukopoulos1, G. C. Bourantas2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.1, pp. 49-70, 2014, DOI:10.3970/cmes.2014.103.049

    Abstract A numerical solution of the linear and nonlinear time-dependent Schrödinger equation is obtained, using the strong form MLPG Collocation method. Schrödinger equation is replaced by a system of coupled partial differential equations in terms of particle density and velocity potential, by separating the real and imaginary parts of a general solution, called a quantum hydrodynamic (QHD) equation, which is formally analogous to the equations of irrotational motion in a classical fluid. The approximation of the field variables is obtained with the Moving Least Squares (MLS) approximation and the implicit Crank-Nicolson scheme is used for time discretization. For the two-dimensional nonlinear… More >

  • Open Access

    ARTICLE

    A Hybrid Quantum-Classical Simulation Study on Stress-Dependence of Li Diffusivity in Graphite

    N. Ohba1,2, S. Ogata2, T. Tamura2, S. Yamakawa1, R. Asahi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.75, No.3&4, pp. 247-266, 2011, DOI:10.3970/cmes.2011.075.247

    Abstract Understanding the stress dependence of Li diffusivity in the Li-graphite intercalation compound (Li-GIC) that has been used in the Li-ion rechargeable battery as a negative electrode, is important to search for better conditions to improve the power performance of the battery. In the Li-GIC, the Li ion creates a long-ranged stress field around itself by expanding the inter-layer distance of the graphite. To take into account such a long-ranged stress field in the first-principles simulation of the Li diffusion, we develop the hybrid quantum (QM)-classical (CL) simulation code. In the hybrid code, the QM region selected adaptively around the Li… More >

  • Open Access

    ARTICLE

    Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots

    Gerhard Klimeck1,2, Fabiano Oyafuso2, Timothy B. Boykin3, R. Chris Bowen2, Paul von Allmen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 601-642, 2002, DOI:10.3970/cmes.2002.003.601

    Abstract Material layers with a thickness of a few nanometers are common-place in today's semiconductor devices. Before long, device fabrication methods will reach a point at which the other two device dimensions are scaled down to few tens of nanometers. The total atom count in such deca-nano devices is reduced to a few million. Only a small finite number of "free'' electrons will operate such nano-scale devices due to quantized electron energies and electron charge. This work demonstrates that the simulation of electronic structure and electron transport on these length scales must not only be fundamentally quantum mechanical, but it must… More >

  • Open Access

    ARTICLE

    Computational Quantum Chemistry on the Photoelectric Characteristics of Semiconductor Quantum Dots and Biological Pigments

    Che-Wun Hong1,2, Wei-Hui Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.3, pp. 211-228, 2011, DOI:10.3970/cmes.2011.072.211

    Abstract This paper intends to use semiconductor quantum dots (cadmium sulphide- CdS) and/or biological pigments (chlorophyll-a derivatives) to replace those expensive ruthenium (Ru) dyes in photoelectrochemical solar cells. Based on the computational quantum chemistry, the molecular structures of (CdS)n (n=1 ~ 22) clusters and chlorophyll-a derivatives (chlorin-H3+ and chlorin-H17+) are configured and optimized. Density functional theory (DFT) of the first principles calculations, which chose B3LYP (Becke 3-parameter Lee-Yang-Parr) and PBE (Perdew-Burke- Ernzerhof) exchange correlation functionals, is employed. Photoelectric properties, such as: molecular orbital, density of state (DOS), highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and resultant band gaps… More >

  • Open Access

    ARTICLE

    Computational Quantum Mechanics Simulation on the Photonic Properties of Group-III Nitride Clusters

    Che-Wun Hong1,2, Chia-Yun Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.2, pp. 79-94, 2010, DOI:10.3970/cmes.2010.067.079

    Abstract This paper describes the quantum mechanical simulation on the photonic properties of group-III nitride clusters, whose bulk types are common materials for light emitting diodes (LEDs). In order to emit different colors of light using the same semiconductor materials, it is possible to vary the band gap by controlling the quantum dot sizes or doping a third atom theoretically. Density functional theory (DFT) calculations are performed to analyze a set of binary (GaN)n (3≤n≤32) and ternary InxGa1-xN (0≤x≤0.375) clusters to study their photonic characteristics. The ground state structures are optimized to calculate the binding energies using the time-independent DFT. Then… More >

  • Open Access

    ARTICLE

    The Temperature-Quantum-Correction Effect on the MD-Calculated Thermal Conductivity of Silicon Thin Films

    Tai-Ming Chang1, Chien-Chou Weng1, Mei-Jiau Huang1,2, Chun-KaiLiu2, Chih-Kuang Yu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 47-66, 2009, DOI:10.3970/cmes.2009.050.047

    Abstract We employ the non-equilibrium molecular dynamics (NEMD) simulation to calculate the in-plane thermal conductivity of silicon thin films of thickness 2.2nm and 11nm. To eliminate the finite-size effect, samples of various lengths are simulated and an extrapolation technique is applied. To perform the quantum correction which is necessary as the MD simulation temperature is lower than Debye temperature, the confined phonon spectra are obtained in advance via the EMD simulations. The investigation shows the thermal conductivities corrected based on the bulk and thin-film phonon densities of states are very close and they agree excellently with the theoretical predictions of a… More >

  • Open Access

    ARTICLE

    Materials Modeling from Quantum Mechanics to The Mesoscale

    G. Fitzgerald1, G. Goldbeck-Wood2, P. Kung1, M. Petersen1, L. Subramanian1, J. Wescott2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 169-184, 2008, DOI:10.3970/cmes.2008.024.169

    Abstract Molecular modeling has established itself as an important component of applied research in areas such as drug discovery, catalysis, and polymers. Algorithmic improvements to these methods coupled with the increasing speed of computational hardware are making it possible to perform predictive modeling on ever larger systems. Methods are now available that are capable of modeling hundreds of thousands of atoms, and the results can have a significant impact on real-world engineering problems. The article reviews some of the modeling methods currently in use; provides illustrative examples of applications to challenges in sensors, fuel cells, and nanocomposites; and finally discusses prospects… More >

  • Open Access

    ARTICLE

    Strain Energy on the Surface of an Anisotropic Half-Space Substrate: Effect of Quantum-Dot Shape and Depth

    E. Pan1,2, Y. Zhang2, P. W. Chung3, M. Denda4

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 157-168, 2008, DOI:10.3970/cmes.2008.024.157

    Abstract Quantum-dot (QD) semiconductor synthesis is one of the most actively investigated fields in strain energy band engineering. The induced strain fields influence ordering and alignment, and the subsequent surface formations determine the energy bandgap of the device. The effect of the strains on the surface formations is computationally expensive to simulate, thus analytical solutions to the QD-induced strain fields are very appealing and useful. In this paper we present an analytical method for calculating the QD-induced elastic field in anisotropic half-space semiconductor substrates. The QD is assumed to be of any polyhedral shape, and its surface is approximated efficiently by… More >

  • Open Access

    ARTICLE

    Modeling of the Electronic Properties of Vertical Quantum Dots by the Finite Element Method

    Philippe Matagne1, Jean-Pierre Leburton2, Jacques Destine, Guy Cantraine3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 1-10, 2000, DOI:10.3970/cmes.2000.001.001

    Abstract We investigate the quantum mechanical properties and single-electron charging effects in vertical semiconductor quantum dots by solving the Schrödinger and Poisson (SP) equations, self-consistently. We use the finite element method (FEM), specifically the Bubnov-Galerkin technique to discretize the SP equations. Owing to the cylindrical symmetry of the structure, the mesh is generated from hexahedral volume elements. The fine details of the electron spectrum and wavefunctions in the quantum dot are obtained as a function of macroscopic parameters such as the gate voltage, device geometry and doping level. The simulations provide comprehensive data for the analysis of the experimental data of… More >

Displaying 151-160 on page 16 of 171. Per Page