Weiqiang Jin1,#, Xingwu Tian1,#, Bohang Shi1, Biao Zhao1,*, Haibin Duan2, Hao Wu3
CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3523-3553, 2024, DOI:10.32604/cmc.2024.055125
Abstract The UAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles (UAVs), which is pivotal in public safety applications, particularly in scenarios involving intrusion monitoring and interception. To address the challenges of data acquisition, real-world deployment, and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks, we propose an innovative swarm intelligence-based UAV pursuit-evasion control framework, namely “Boids Model-based DRL Approach for Pursuit and Escape” (Boids-PE), which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning (DRL). The Boids model, which simulates collective… More >