Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,279)
  • Open Access

    PROCEEDINGS

    Investigation on Microscopic Properties of Copper Concentrate Particles by Combining Experiments and DEM Modelling

    Zhenyu Zhu1, Ping Zhou1, Xingbang Wan1, Zhuo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-4, 2024, DOI:10.32604/icces.2024.011777

    Abstract 1 General introduction
    The flash smelting is one of the dominant technologies for copper matte production. To meet the increasing demand, the production capability of flash smelting furnace has been increased several times. However, under current conditions, the segregation of concentrate particles becomes an escalating issue, impacting production efficiency and safety [1]. The DEM modelling is a powerful tool for investigating particle behaviors such as contact and collision, but the lack of accurate microscopic properties of copper concentrate particles makes it challenging to conduct reliable DEM simulations [2]. To address this gap, this study employs both… More >

  • Open Access

    PROCEEDINGS

    Ultrafast Self-Transport of Multi-Scale Droplets Driven by Laplace Pressure Difference and Capillary Suction

    Fujian Zhang1, Ziyang Wang1, Xiang Gao1, Zhongqiang Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011736

    Abstract Spontaneous droplet transport has broad application prospects in fields such as water collection and microfluidic chips. Despite extensive research in this area, droplet self-transport is still limited by issues such as slow transport velocity, short distance, and poor integrity. Here, a novel cross-hatch textured cone (CHTC) with multistage microchannels and circular grooves is proposed to realize ultrafast directional long-distance self-transport of multi-scale droplets. The CHTC triggers two modes of fluid transport: Droplet transport by Laplace pressure difference and capillary suction pressure-induced fluid transfer in microchannels on cone surfaces. By leveraging the coupling effect of the… More >

  • Open Access

    PROCEEDINGS

    Macroscopic Deflections of Fatigue Crack in Direct Energy Deposited Ti–5Al–5Mo–5V–1Cr–1Fe

    Binchao Liu1,2,*, Qiuyi Wang2, Rui Bao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011835

    Abstract With the everlasting pursuit for weight reduction, efforts are devoted to applying additively manufactured (AM) structures in aeronautic vehicles; however, anomalous fatigue crack growth (FCG) behaviors, such as deflection and branching, are recently observed in macroscale, which deviates from the predictions by classic fracture mechanics. In this work, FCG behaviors of direct energy deposited (DED) Ti–5Al–5Mo–5V–1Cr–1Fe (TC18 in China) are investigated, in which fatigue crack deflections induced by combined impacts of loading and microstructures are revealed. Experiment results show that cracks are more deflected in columnar grains due to the preferred distribution of acicular a… More >

  • Open Access

    PROCEEDINGS

    Explore Wetting Dynamics at Micro and Nano Scales: Applications and Progress of Long-Needle Atomic Force Microscope

    Dongshi Guan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011291

    Abstract Contact line pinning and the corresponding contact angle hysteresis (CAH) are important interfacial phenomena that occur in nature and play a significant role in many industrial processes, such as surface coating, ink-jet printing, and immersion lithography. Traditional optical methods face limitations due to the optical diffraction limit, making it difficult to directly measure flow and interface phenomena at the micro- or nanoscale. However, atomic force microscopy (AFM) offers a solution by enabling precise manipulation and force measurements at micro and nano scales. The AFM-based microrheometer, which is assembled with a long-needle probe, can be used More >

  • Open Access

    PROCEEDINGS

    A Novel Damage Model for Face-Centered Cubic Crystal Materials Incorporating Microscopic Crystal Cleavage and Slip Failure Mechanisms

    Qianyu Xia1, Zhixin Zhan1,*, Weiping Hu1, Qingchun Meng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011238

    Abstract The occurrence of crystal cleavage and slip at the microscopic level in single crystal materials serves as the fundamental underlying factors leading to their macroscopic failures. Therefore, investigating the failure mechanisms and damage processes at the scale of slip systems significantly enhances our comprehension of the degradation and failure patterns exhibited by crystal materials.
    In this study, based on the theory of crystal plasticity, we examine the effects of microscopic damage on the slip systems concerning the failure of face-centered cubic (FCC) crystal materials. Additionally, we develop a novel damage model for FCC crystal materials, incorporating… More >

  • Open Access

    PROCEEDINGS

    Static and Dynamic Fracture Toughness of Graphite Materials with Varying Grain Sizes

    Sihui Tong1, Boyuan Cao1, Dongqing Tian2, Qinwei Ma1, Guangyan Liu1,*, Li Shi2, Libin Sun2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010870

    Abstract Graphite materials serve critical roles as moderators, reflectors and core structural components in high-temperature gas-cooled nuclear reactors. These materials may experience a variety of loads during the reactor operation, including thermal, radiation, fatigue and dynamic loads, potentially leading to crack initiation and propagation. Consequently, it is imperative to investigate the fracture properties of graphite materials. Currently, there exists a dearth of comprehensive studies on the fracture toughness of graphite materials with varying grain sizes, especially regarding dynamic fracture toughness. This study introduces a novel approach utilizing a digital-image-correlation-based virtual extensometer to analyze crack propagation in… More >

  • Open Access

    PROCEEDINGS

    Investigation on Microstructural Evolution and Corrosion Resistance Improvement of E690 Steel via Underwater Laser Directed Energy Deposition

    Mingzhi Chen1, Zhandong Wang2, Guifang Sun1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012203

    Abstract Marine environments pose severe corrosion challenges to underwater equipment, thereby leading to significant risks and demanding immediate in-situ restoration. Here we developed an underwater laser directed energy deposition (UDMD) technique to repair the E690 steel and enhance its corrosion resistance. Systematic investigations about the underwater pressure (P) and 316L stainless steel (SS316L) coatings on the microstructure, mechanical properties, and corrosion resistance of the repaired E690 steel were conducted. Results show that water cooling can refine grain, promote the formation of lath martensite, and increase dislocation density. No obvious relationship between the pressure and microstructure evolution… More >

  • Open Access

    PROCEEDINGS

    Simple but Effective Heat Treatment on Hot Isostatic Press Diffusion Bonded Ni60A Hardfacing Layer

    Lei Yu1,2, Yingjie Yan1,2, Hao Dong3,4, Suk-Chun Moon5,*, Zhengyi Jiang5,*, Rui Cao1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011941

    Abstract Ni60A hardfacing alloy, as one of the highest-alloy grades and hardest alloy of Ni-Cr-B-Si alloys, is expected to be used as hardfacing alloy for thrust discs in nuclear main pumps to reduce friction, corrosion and erosion. Since mechanical properties of Ni-Cr-B-Si alloys are very sensitive to their defects and microstructures, heat treatment/remelting methods have been used to eliminate porosity and to modify microstructural heterogeneity. In our previous research, Ni60A hardfacing layer with high micro-hardness and excellent bonding strength has been fabricated onto 0Cr18Ni10Ti austenitic stainless steel using hot isostatic press diffusion bonding technique. However, some… More >

  • Open Access

    PROCEEDINGS

    Influence of Stress and Hydraulic History on Water Retention Curveof Natural Loessin the Suction Range of 0-367.5MPa

    Tiangang Lan1, Mengyuan Ma1, Shifeng Lu1, Ling Xu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010867

    Abstract Natural loess is a kind of kaolin wind-deposited soil.Thedifferent layers of loess experienced different overburden pressures and wetting-drying cycles, resulting in different water retention behaviors.The axis translation technique and the vapor equilibrium technique to determine the water retention behaviorof the three different sediment depth natural loess during drying and wettingprocess. In addition, the microstructure evolution experienced wetting and drying cycles also characterized by mercury intrusion porosimetry. The saturation and air entry value increased with the sediment depth increased because deeper sediment depth means lower initial void ratio. Thewaterretentioncurveshowsthatthereisalmost nohysteresis observed around the naturalsuction,and in relatively… More >

  • Open Access

    REVIEW

    Mitochondrial-epigenetic crosstalk as an integrative standpoint into gut microbiome dysbiosis and related diseases

    VINíCIUS AUGUSTO SIMãO1, LUIZ GUSTAVO DE ALMEIDA CHUFFA1, LEóN FERDER2, FELIPE INSERRA2, WALTER MANUCHA3,4,*

    BIOCELL, Vol.48, No.10, pp. 1429-1442, 2024, DOI:10.32604/biocell.2024.053478 - 02 October 2024

    Abstract The interplay between mitochondria, epigenetics, and the microbiota is intricately linked to both health and disease. Within our cells, a complex molecular dance occurs, where these components intertwine in a mesmerizing ballet that plays a decisive role in our health. Mitochondria, beyond being energy powerhouses, modulate nuclear gene expression through messengers like reactive oxidative stress (ROS) and calcium. Epigenetics, acting as the molecular conductor, regulates the expression of both nuclear and mitochondrial genes through modifications like DNA methylation. The intestinal microbiota itself produces short-chain fatty acids (SCFAs) that influence mitochondrial activity. SCFA-induced epigenetic modifications, like… More >

Displaying 31-40 on page 4 of 1279. Per Page