Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Pareto Multi-Objective Reconfiguration of IEEE 123-Bus Unbalanced Power Distribution Networks Using Metaheuristic Algorithms: A Comprehensive Analysis of Power Quality Improvement

    Nisa Nacar Çıkan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3279-3327, 2025, DOI:10.32604/cmes.2025.065442 - 30 June 2025

    Abstract This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks (UPDNs), focusing on the complex 123-Bus test system. Three scenarios are investigated: (1) simultaneous power loss reduction and voltage profile improvement, (2) minimization of voltage and current unbalance indices under various operational cases, and (3) multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index, active power loss, and current unbalance index. Unlike previous research that oftensimplified system components, this work maintains all equipment, including capacitor banks, transformers, and voltage regulators, to ensure realistic results. The study evaluates twelve metaheuristic More >

  • Open Access

    ARTICLE

    Optimization of Reconfiguration and Resource Allocation for Distributed Generation and Capacitor Banks Using NSGA-II: A Multi-Scenario Approach

    Tareq Hamadneh1, Belal Batiha2, Frank Werner3,*, Mehrdad Ahmadi Kamarposhti4,*, Ilhami Colak5, El Manaa Barhoumi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1519-1548, 2025, DOI:10.32604/cmes.2025.063571 - 30 May 2025

    Abstract Reconfiguration, as well as optimal utilization of distributed generation sources and capacitor banks, are highly effective methods for reducing losses and improving the voltage profile, or in other words, the power quality in the power distribution system. Researchers have considered the use of distributed generation resources in recent years. There are numerous advantages to utilizing these resources, the most significant of which are the reduction of network losses and enhancement of voltage stability. Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Intersect Mutation Differential Evolution (IMDE) algorithms are used in this… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Simulation Research on Aerodynamic Field of Integrated Exhaust End of Natural Gas Distributed Energy Station

    Shuang Li1, Suoying He2, Shen Cheng1,*, Jiarui Wu1, Ruiting Meng1

    Energy Engineering, Vol.122, No.6, pp. 2309-2335, 2025, DOI:10.32604/ee.2025.062216 - 29 May 2025

    Abstract In view of the situation of multi-temperature, multi-medium and multi-discharge equipment on the integrated exhaust end platform of a natural gas distributed energy station, which is compact in layout, mutual influence, complex aerodynamic field and complex heat and mass transfer field, the temperature field and aerodynamic field of the platform were comprehensively studied through field experiments and numerical simulation. The research results show that the high temperature flue gas discharged from the chimney is hindered by the chimney cap and returns downward. The noise reduction walls around the chimney make the top of the platform… More >

  • Open Access

    ARTICLE

    Multi-Objective Approaches for Optimizing 37-Bus Power Distribution Systems with Reconfiguration Technique: From Unbalance Current & Voltage Factor to Reliability Indices

    Murat Cikan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 673-721, 2025, DOI:10.32604/cmes.2025.061699 - 11 April 2025

    Abstract This study examines various issues arising in three-phase unbalanced power distribution networks (PDNs) using a comprehensive optimization approach. With the integration of renewable energy sources, increasing energy demands, and the adoption of smart grid technologies, power systems are undergoing a rapid transformation, making the need for efficient, reliable, and sustainable distribution networks increasingly critical. In this paper, the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms. Among these advanced search algorithms, the Bonobo Optimizer (BO) has demonstrated superior performance in handling the complexities of unbalanced power… More >

  • Open Access

    REVIEW

    A Critical Review of Active Distribution Network Reconfiguration: Concepts, Development, and Perspectives

    Bo Yang1, Rui Zhang1, Jie Zhang2, Xianlong Cheng2, Jiale Li3, Yimin Zhou1, Yuanweiji Hu1, Bin He1, Gongshuai Zhang4, Xiuping Du4, Si Ji5, Yiyan Sang6, Zhengxun Guo7,8,*

    Energy Engineering, Vol.121, No.12, pp. 3487-3547, 2024, DOI:10.32604/ee.2024.054662 - 22 November 2024

    Abstract In recent years, the large-scale grid connection of various distributed power sources has made the planning and operation of distribution grids increasingly complex. Consequently, a large number of active distribution network reconfiguration techniques have emerged to reduce system losses, improve system safety, and enhance power quality via switching switches to change the system topology while ensuring the radial structure of the network. While scholars have previously reviewed these methods, they all have obvious shortcomings, such as a lack of systematic integration of methods, vague classification, lack of constructive suggestions for future study, etc. Therefore, this… More >

  • Open Access

    ARTICLE

    A Novel Defender-Attacker-Defender Model for Resilient Distributed Generator Planning with Network Reconfiguration and Demand Response

    Wenlu Ji*, Teng Tu, Nan Ma

    Energy Engineering, Vol.121, No.5, pp. 1223-1243, 2024, DOI:10.32604/ee.2024.046112 - 30 April 2024

    Abstract To improve the resilience of a distribution system against extreme weather, a fuel-based distributed generator (DG) allocation model is proposed in this study. In this model, the DGs are placed at the planning stage. When an extreme event occurs, the controllable generators form temporary microgrids (MGs) to restore the load maximally. Simultaneously, a demand response program (DRP) mitigates the imbalance between the power supply and demand during extreme events. To cope with the fault uncertainty, a robust optimization (RO) method is applied to reduce the long-term investment and short-term operation costs. The optimization is formulated More >

  • Open Access

    ARTICLE

    Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation

    Caixia Tao, Shize Yang*, Taiguo Li

    Energy Engineering, Vol.121, No.1, pp. 187-201, 2024, DOI:10.32604/ee.2023.042421 - 27 December 2023

    Abstract With the current integration of distributed energy resources into the grid, the structure of distribution networks is becoming more complex. This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms. Consequently, traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima. To tackle this issue, a more advanced particle swarm optimization algorithm is proposed. To address the varying emphases at different stages of the optimization process, a dynamic strategy is implemented to regulate the social and self-learning factors. The Metropolis criterion is introduced into… More >

  • Open Access

    ARTICLE

    Modified Satin Bowerbird for Distributed Generation in Remotely Controlled Voltage Bus

    K. Dharani Sree*, P. Karpagavalli

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1181-1195, 2023, DOI:10.32604/iasc.2023.025303 - 06 June 2022

    Abstract The distributed generators in the radial distribution network are to improve the Grid performance and its efficiency. These Distributed Generators control the PV bus; it is converted as a remote controlled PVQ bus. This PVQ bus reduces the power loss and reactive power. Initially, the distributed generators were placed in the system using mathematical modelling or the optimization. This approach improves the efficiency but it has no effect in loss minimization. To minimize the loss the reconfigured network with Genetic algorithm based Distributed generator placement proposed as existing work. This approach minimizes the loss effectively;… More >

  • Open Access

    ARTICLE

    Optimal Intelligent Reconfiguration of Distribution Network in the Presence of Distributed Generation and Storage System

    Gang Lei1,*, Chunxiang Xu2

    Energy Engineering, Vol.119, No.5, pp. 2005-2029, 2022, DOI:10.32604/ee.2022.021154 - 21 July 2022

    Abstract In the present paper, the distribution feeder reconfiguration in the presence of distributed generation resources (DGR) and energy storage systems (ESS) is solved in the dynamic form. Since studies on the reconfiguration problem have ignored the grid security and reliability, the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem. To achieve the mentioned benefits, there are several practical plans in the distribution network. One of these applications is the network rearrangement plan, which is the simplest and least expensive way… More >

  • Open Access

    ARTICLE

    A Novel Aquila Optimizer Based PV Array Reconfiguration Scheme to Generate Maximum Energy under Partial Shading Condition

    Dong An1, Junqing Jia1, Wenchao Cai1, Deyu Yang1, Chao Lv1, Jiawei Zhu2, Yingying Jiao3,*

    Energy Engineering, Vol.119, No.4, pp. 1531-1545, 2022, DOI:10.32604/ee.2022.019284 - 23 May 2022

    Abstract This paper develops a real-time PV arrays maximum power harvesting scheme under partial shading condition (PSC) by reconfiguring PV arrays using Aquila optimizer (AO). AO is based on the natural behaviors of Aquila in capturing prey, which can choose the best hunting mechanism ingeniously and quickly by balancing the local exploitation and global exploration via four hunting methods of Aquila: choosing the searching area through high soar with the vertical stoop, exploring in different searching spaces through contour flight with quick glide attack, exploiting in convergence searching space through low flight with slow attack, and More > Graphic Abstract

    A Novel Aquila Optimizer Based PV Array Reconfiguration Scheme to Generate Maximum Energy under Partial Shading Condition

Displaying 1-10 on page 1 of 11. Per Page