Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (138)
  • Open Access

    ARTICLE

    Cognitive Erasure-Coded Data Update and Repair for Mitigating I/O Overhead

    Bing Wei, Ming Zhong, Qian Chen, Yi Wu*, Yubin Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069910 - 09 December 2025

    Abstract In erasure-coded storage systems, updating data requires parity maintenance, which often leads to significant I/O amplification due to “write-after-read” operations. Furthermore, scattered parity placement increases disk seek overhead during repair, resulting in degraded system performance. To address these challenges, this paper proposes a Cognitive Update and Repair Method (CURM) that leverages machine learning to classify files into write-only, read-only, and read-write categories, enabling tailored update and repair strategies. For write-only and read-write files, CURM employs a data-difference mechanism combined with fine-grained I/O scheduling to minimize redundant read operations and mitigate I/O amplification. For read-write files,… More >

  • Open Access

    ARTICLE

    Multi-Feature Fragile Image Watermarking Algorithm for Tampering Blind-Detection and Content Self-Recovery

    Qiuling Wu1,*, Hao Li1, Mingjian Li1, Ming Wang2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068220 - 10 November 2025

    Abstract Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright. However, in practical applications, this technology faces various problems such as severe image distortion, inaccurate localization of the tampered regions, and difficulty in recovering content. Given these shortcomings, a fragile image watermarking algorithm for tampering blind-detection and content self-recovery is proposed. The multi-feature watermarking authentication code (AC) is constructed using texture feature of local binary patterns (LBP), direct coefficient of discrete cosine transform (DCT) and contrast feature of gray level co-occurrence matrix (GLCM) for detecting the tampered region, and the… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Carbon Capture, Utilization, and Storage–Enhanced Gas Recovery

    Nan Qin1, Shaofeng Ning2,*, Zihan Zhao1,2, Yu Luo1, Bo Chen1, Xiaoxu Liu1, Yongming He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2997-3009, 2025, DOI:10.32604/fdmp.2025.074456 - 31 December 2025

    Abstract Balancing CO2 emission reduction with enhanced gas recovery in carbonate reservoirs remains a key challenge in subsurface energy engineering. This study focuses on the Maokou Formation gas reservoir in the Wolonghe Gas Field, Sichuan Basin, and employs a mechanistic model integrated with numerical simulations that couple CO2–water–rock geochemical interactions to systematically explore the principal engineering and chemical factors governing Carbon Capture, Utilization, and Storage–Enhanced Gas Recovery (CCUS–EGR). The analysis reveals that both the injection–production ratio and gas injection rate exhibit optimal ranges. Maximum gas output under single-parameter variation occurs at an injection–production ratio of 0.7 and… More >

  • Open Access

    ARTICLE

    Effect of Salinity on Imbibition-Based Oil Production

    Xiong Liu1, Yueqi Cui1,*, Yirui Ren1, Lingxuan Peng2, Yuchan Cheng1, Zhiyuan Du1, Yu Chen1, Lishan Cao3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2815-2828, 2025, DOI:10.32604/fdmp.2025.073775 - 01 December 2025

    Abstract This study explores the impact of salinity on fluid replacement during imbibition-driven oil recovery through a series of core self-imbibition experiments. By integrating key parameters such as interfacial tension, contact angle, and oil displacement efficiency, we systematically examine how variations in salinity level, ion type, and ion concentration affect the imbibition process. The results demonstrate that the salinity of the injected fluid exerts a strong influence on the rate and extent of oil recovery. Compared with high-salinity conditions, low-salinity injection, particularly below 5000 mg·L−1, induces pronounced fluctuations in the replacement rate, achieving the highest recovery at More >

  • Open Access

    ARTICLE

    A Non-Intrusive Spiral Coil Heat Exchanger for Waste Heat Recovery from HVAC Units: Experimental and Thermal Performance Analysis

    S. Srinivasa senthil, K. Vijayakumar*

    Energy Engineering, Vol.122, No.12, pp. 5149-5173, 2025, DOI:10.32604/ee.2025.070889 - 27 November 2025

    Abstract Heating, ventilation, and air conditioning (HVAC) systems contribute substantially to global energy consumption, while rejecting significant amounts of low-grade heat into the environment. This paper presents a non-intrusive spiral-coil heat exchanger designed to recover waste heat from the outdoor condenser of a split-type air conditioner. The system operates externally without altering the existing HVAC configuration, thereby rendering it suitable for retrofitting. Water was circulated as the working fluid at flow rates of 0.028–0.052 kg/s to assess thermal performance. Performance indicators, including the outlet water temperature, heat transfer rate, convective coefficient, and efficiency, were systematically evaluated.… More >

  • Open Access

    PROCEEDINGS

    Development of the FractureX Platform Based on FEALPy and Its Application in Brittle Fracture Simulation

    Tian Tian1, Huayi Wei2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.011175

    Abstract Brittle fracture is a critical failure mode in structural materials, and accurately simulating its evolution is essential for engineering design, material performance evaluation, and failure prediction. Traditional numerical methods, however, face significant challenges when dealing with higher-order fracture models and complex fracture behaviors. To overcome these challenges, this study proposes an innovative simulation framework based on higher-order finite element methods and adaptive mesh refinement, effectively balancing computational efficiency and simulation accuracy.
    The research first develops a higher-order finite element method for the continuum damage fracture phase-field model. By incorporating higher-order finite element techniques, the proposed method… More >

  • Open Access

    ARTICLE

    A Qualitative Analysis of Emotions among Rescue and Recovery Workers Responding to the Oklahoma City Bombing

    E. Whitney Pollio1,*, David E. Pollio2, Carol S. North3,4

    International Journal of Mental Health Promotion, Vol.27, No.10, pp. 1483-1495, 2025, DOI:10.32604/ijmhp.2025.067755 - 31 October 2025

    Abstract Objectives: At the time of the bombing of the federal building in Oklahoma City, Oklahoma (OKC), it was the deadliest terrorist attack in the United States of America. Available research on this incident, and in general, has been quantitative, using deductive methods. The purpose of the current study was to systematically examine professional disaster response workers’ emotions elicited spontaneously and in detail as they were experienced over time after a major disaster. This qualitative study will add to existing knowledge of psychopathology and the psychosocial effects of disasters on professional responders, which have not been… More >

  • Open Access

    ARTICLE

    Acetylation of Corn Stalk (Zea mays) for Its Valorization

    Jhony César Muñoz Zambrano, Douglas Alexander Bermúdez Parrales, María Antonieta Riera*

    Journal of Polymer Materials, Vol.42, No.3, pp. 837-851, 2025, DOI:10.32604/jpm.2025.067277 - 30 September 2025

    Abstract Agricultural waste is a potentially interesting resource due to the compounds present. In this study, cellulose was extracted from corn stalks (Zea mays) and subsequently converted into cellulose acetate (CA). Before the extraction process, the waste sample was characterized by pH, moisture, ash, protein content, total reducing sugars (TRS), carbohydrates, cellulose, hemicellulose, and lignin. Acid and alkaline hydrolysis were performed with different reagents, concentrations, and extraction times. Sulfuric acid (H2SO4) and acetic acid (CH3COOH) were used in the acid hydrolysis, while sodium hydroxide (NaOH) was used in the alkaline hydrolysis. Three concentrations (0.62, 1.25, 2.5)% and two… More >

  • Open Access

    ARTICLE

    A Bi-Level Capacity Configuration Model for Hybrid Energy Storage Considering SOC Self-Recovery

    Fan Chen*, Tianhui Zhang, Man Wang, Zhiheng Zhuang, Qiang Zhang, Zihan Ma

    Energy Engineering, Vol.122, No.10, pp. 4099-4120, 2025, DOI:10.32604/ee.2025.069346 - 30 September 2025

    Abstract The configuration of a hybrid energy storage system (HESS) plays a pivotal role in mitigating wind power fluctuations and enabling primary frequency regulation, thereby enhancing the active power support capability of wind power integration systems. However, most existing studies on HESS capacity configuration overlook the self-recovery control of the state of charge (SOC), creating challenges in sustaining capacity during long-term operation. This omission can impair frequency regulation performance, increase capacity requirements, and shorten battery lifespan. To address these challenges, this study proposes a bi-level planning–operation capacity configuration model that explicitly incorporates SOC self-recovery control. In… More >

  • Open Access

    REVIEW

    Enhanced Oil Recovery in Sandstone Reservoirs: A Review of Mechanistic Advances and Hydrocarbon Predictive Techniques

    Surajudeen Sikiru1,2,*, Jemilat Yetunde Yusuf 3, Hassan Soleimani4, Niraj Kumar5, Zia ur Rehman6, Bonnia N N1,*

    Energy Engineering, Vol.122, No.10, pp. 3917-3960, 2025, DOI:10.32604/ee.2025.067815 - 30 September 2025

    Abstract Enhanced oil recovery (EOR) refers to the many methodologies used to augment the volume of crude oil extracted from an oil reservoir. These approaches are used subsequent to the exhaustion of basic and secondary recovery methods. There are three primary categories of Enhanced Oil Recovery (EOR): thermal, gas injection, and chemical. Enhanced oil recovery methods may be costly and intricate; yet, they facilitate the extraction of supplementary oil that would otherwise remain in the reservoir. Enhanced Oil Recovery (EOR) may prolong the lifespan of an oil field and augment the total output from a specific… More >

Displaying 1-10 on page 1 of 138. Per Page