Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem

    Binhui Wang, Hongfeng Wang*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 371-388, 2025, DOI:10.32604/cmc.2024.058885 - 03 January 2025

    Abstract The distributed permutation flow shop scheduling problem (DPFSP) has received increasing attention in recent years. The iterated greedy algorithm (IGA) serves as a powerful optimizer for addressing such a problem because of its straightforward, single-solution evolution framework. However, a potential draw-back of IGA is the lack of utilization of historical information, which could lead to an imbalance between exploration and exploitation, especially in large-scale DPFSPs. As a consequence, this paper develops an IGA with memory and learning mechanisms (MLIGA) to efficiently solve the DPFSP targeted at the mini-mal makespan. In MLIGA, we incorporate a memory… More >

  • Open Access

    ARTICLE

    An Asynchronous Data Transmission Policy for Task Offloading in Edge-Computing Enabled Ultra-Dense IoT

    Dayong Wang1,*, Kamalrulnizam Bin Abu Bakar1, Babangida Isyaku2, Liping Lei3

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4465-4483, 2024, DOI:10.32604/cmc.2024.059616 - 19 December 2024

    Abstract In recent years, task offloading and its scheduling optimization have emerged as widely discussed and significant topics. The multi-objective optimization problems inherent in this domain, particularly those related to resource allocation, have been extensively investigated. However, existing studies predominantly focus on matching suitable computational resources for task offloading requests, often overlooking the optimization of the task data transmission process. This inefficiency in data transmission leads to delays in the arrival of task data at computational nodes within the edge network, resulting in increased service times due to elevated network transmission latencies and idle computational resources.… More >

  • Open Access

    ARTICLE

    SEF: A Smart and Energy-Aware Forwarding Strategy for NDN-Based Internet of Healthcare

    Naeem Ali Askar1,*, Adib Habbal1,*, Hassen Hamouda2, Abdullah Mohammad Alnajim3, Sheroz Khan4

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4625-4658, 2024, DOI:10.32604/cmc.2024.058607 - 19 December 2024

    Abstract Named Data Networking (NDN) has emerged as a promising communication paradigm, emphasizing content-centric access rather than location-based access. This model offers several advantages for Internet of Healthcare Things (IoHT) environments, including efficient content distribution, built-in security, and natural support for mobility and scalability. However, existing NDN-based IoHT systems face inefficiencies in their forwarding strategy, where identical Interest packets are forwarded across multiple nodes, causing broadcast storms, increased collisions, higher energy consumption, and delays. These issues negatively impact healthcare system performance, particularly for individuals with disabilities and chronic diseases requiring continuous monitoring. To address these challenges,… More >

  • Open Access

    ARTICLE

    Real-Time Implementation of Quadrotor UAV Control System Based on a Deep Reinforcement Learning Approach

    Taha Yacine Trad1,*, Kheireddine Choutri1, Mohand Lagha1, Souham Meshoul2, Fouad Khenfri3, Raouf Fareh4, Hadil Shaiba5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4757-4786, 2024, DOI:10.32604/cmc.2024.055634 - 19 December 2024

    Abstract The popularity of quadrotor Unmanned Aerial Vehicles (UAVs) stems from their simple propulsion systems and structural design. However, their complex and nonlinear dynamic behavior presents a significant challenge for control, necessitating sophisticated algorithms to ensure stability and accuracy in flight. Various strategies have been explored by researchers and control engineers, with learning-based methods like reinforcement learning, deep learning, and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems. This paper investigates a Reinforcement Learning (RL) approach for both high and low-level quadrotor control systems, focusing on attitude stabilization and position… More >

  • Open Access

    ARTICLE

    Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay

    Li Wang1,*, Xiaoyong Wang2

    Energy Engineering, Vol.121, No.12, pp. 3953-3979, 2024, DOI:10.32604/ee.2024.056705 - 22 November 2024

    Abstract Plug-in Hybrid Electric Vehicles (PHEVs) represent an innovative breed of transportation, harnessing diverse power sources for enhanced performance. Energy management strategies (EMSs) that coordinate and control different energy sources is a critical component of PHEV control technology, directly impacting overall vehicle performance. This study proposes an improved deep reinforcement learning (DRL)-based EMS that optimizes real-time energy allocation and coordinates the operation of multiple power sources. Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces. They often fail to strike an optimal balance between exploration and exploitation, and… More >

  • Open Access

    ARTICLE

    Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings

    Inna Bilous1, Dmytro Biriukov1, Dmytro Karpenko2, Tatiana Eutukhova2, Oleksandr Novoseltsev2,*, Volodymyr Voloshchuk1

    Energy Engineering, Vol.121, No.12, pp. 3617-3634, 2024, DOI:10.32604/ee.2024.051684 - 22 November 2024

    Abstract This article focuses on the challenges of modeling energy supply systems for buildings, encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings. Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material, such as for thermal upgrades, which consequently incurs additional economic costs. It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions, considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in… More > Graphic Abstract

    Reinforcement Learning Model for Energy System Management to Ensure Energy Efficiency and Comfort in Buildings

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    Improved IChOA-Based Reinforcement Learning for Secrecy Rate Optimization in Smart Grid Communications

    Mehrdad Shoeibi1, Mohammad Mehdi Sharifi Nevisi2, Sarvenaz Sadat Khatami3, Diego Martín2,*, Sepehr Soltani4, Sina Aghakhani5

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2819-2843, 2024, DOI:10.32604/cmc.2024.056823 - 18 November 2024

    Abstract In the evolving landscape of the smart grid (SG), the integration of non-organic multiple access (NOMA) technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management. However, the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages, especially when broadcasted from a neighborhood gateway (NG) to smart meters (SMs). This paper introduces a novel approach based on reinforcement learning (RL) to fortify the performance of secrecy. Motivated by the need for efficient and effective training of the fully connected layers in the RL… More >

  • Open Access

    PROCEEDINGS

    Macroscopic Modelling Approach for Textile Reinforcement Forming

    Renzi Bai1,2,*, Julien Colmars3, Hui Cheng1,2, Kaifu Zhang1,2, Philippe Boisse3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011719

    Abstract The increasing use of composite material require more efficient and inexpensive manufacturing process analysis method to optimize the product quality. The manufacture of textile reinforced composites often requires the preforming of a dry textile reinforcement and the subsequent injection of a resin in Liquid Composite Moulding processes (LCM). The composite can also be produced by thermoforming a prepreg consisting of a textile reinforcement incorporating the unhardened matrix, so that the composite can be formed. In both cases (LCM and prepreg), the forming process is driven by the deformation of the textile reinforcement which is influenced… More >

  • Open Access

    ARTICLE

    Continual Reinforcement Learning for Intelligent Agricultural Management under Climate Changes

    Zhaoan Wang1, Kishlay Jha2, Shaoping Xiao1,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1319-1336, 2024, DOI:10.32604/cmc.2024.055809 - 15 October 2024

    Abstract Climate change poses significant challenges to agricultural management, particularly in adapting to extreme weather conditions that impact agricultural production. Existing works with traditional Reinforcement Learning (RL) methods often falter under such extreme conditions. To address this challenge, our study introduces a novel approach by integrating Continual Learning (CL) with RL to form Continual Reinforcement Learning (CRL), enhancing the adaptability of agricultural management strategies. Leveraging the Gym-DSSAT simulation environment, our research enables RL agents to learn optimal fertilization strategies based on variable weather conditions. By incorporating CL algorithms, such as Elastic Weight Consolidation (EWC), with established… More >

Displaying 1-10 on page 1 of 171. Per Page