Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (128)
  • Open Access

    ABSTRACT

    Reliability and Variability of Hepatic Venous Pressure Gradient as a Surrogate of Portal Pressure Gradient: Insights from a Computational Model-Based Study

    Fuyou Liang1,*, Tianqi Wang1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 25-26, 2019, DOI:10.32604/mcb.2019.05710

    Abstract Hepatic venous pressure gradient (HVPG) measurement has been increasingly accepted as a useful means for indirectly measuring portal venous pressure in patients with portal hypertension (PHT) caused by chronic liver diseases. Despite the existence of numerous studies addressing the clinical utility of HVPG measurement, it is as yet unclear how the accuracy of measured HVPG as a surrogate of portal pressure gradient (PPG) is influenced by the pathological status of the hepatic circulation that not only changes with the progression of liver disease but also differs considerably among patients. In addition, it remains unclear whether HVPGs measured in different hepatic… More >

  • Open Access

    ARTICLE

    Advanced analysis of uncertain cracked structures

    P. Bocchini, C. Gentilini, F. Ubertini, E. Viola1

    Structural Durability & Health Monitoring, Vol.2, No.2, pp. 109-122, 2006, DOI:10.3970/sdhm.2006.002.109

    Abstract This paper provides a simple and reliable method for the probabilistic characterization of the linear elastic response of frame structures with edge cracks of uncertain depth and location. A statistical analysis of the structural response allows consideration of the reliability of the investigated structure. A numerical example provides an indication of the performance of the approach proposed. More >

  • Open Access

    ARTICLE

    Building Risk Assessment Procedures

    A. Soprano1, F. Caputo1

    Structural Durability & Health Monitoring, Vol.2, No.1, pp. 51-68, 2006, DOI:10.3970/sdhm.2006.002.051

    Abstract This work describes the results of the experience acquired by the authors during their participation to some among the European research programs with the aim to develop a probabilistic risk assessment procedure to analyse the spreading of fatigue-induced damage in typical aeronautical components. The several steps of the procedure are pointed out, and especially the modelling of the damage evolutionary process; the initiation and the transitional probabilities, which characterize the passage from one damage level to a higher one, are fully characterized and their dependence from time and from the damage state of surrounding zones illustrated by various example results. More >

  • Open Access

    ABSTRACT

    Design Capacity Determination Method from Specimen Testing Based on Design Reliability Analysis

    Yuan-Qi Li, Li-Ping Wang, Zu-Yan Shen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.1, pp. 13-14, 2011, DOI:10.3970/icces.2011.016.013

    Abstract In structural design, sometimes analysis methods in available specifications cannot be used directly for new materials or new structural configurations. A common way is to test and check the behavior in question of the prototype units including complete or parts of structures, individual members or connections for design assessment. How to directly obtain the design capacity with an expected reliability level according to the related codes from test results is a critical issue. Currently, there isn't any explicit specification for the above issues in Chinese codes, and few references are available. In this paper, referring to Australian specifications for Cold-formed… More >

  • Open Access

    ABSTRACT

    Weight And Reliability Optimization Of A Helicopter Composite Armor Using Dynamic Programming

    V.C. Santos1, P.S. Lopes1, R. Gärtner2, A.B. Jorge1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.2, pp. 53-58, 2007, DOI:10.3970/icces.2007.004.053

    Abstract This work presents an approach for weight and reliability optimization of aeronautical armors. Military and police helicopters are usually exposed to highly risky situations, with a high probability for these aircrafts to be hit by projectiles. In this context, floor aircraft armor can be used to protect the crews' lives. However, the armoring of an aircraft causes an increase in weight. If this extra weight is poorly arranged, the changes in aircraft centroid position may even destabilize the aircraft. Thus, it is essential to design an armor not only to protect the aircraft, but also not to conflict with aircraft… More >

  • Open Access

    ARTICLE

    Durability of Reinforced Concrete Structures under Coupling Action of Load and Chlorine Erosion

    Yang Li1,*, Dongwei Yang1, Jiangkun Zhang1

    Structural Durability & Health Monitoring, Vol.12, No.1, pp. 51-63, 2018, DOI:10.3970/sdhm.2018.012.051

    Abstract Diffusion behavior of chloride ion in reinforced concrete under bending moment was studied by taking the ratio of bending moment to ultimate flexural capacity as load level indicator. The function relationship between load level and chloride ion diffusion coefficient was established, based on that the limit state equation of the chloride ion critical concentration and chloride ion concentration on surface of the steel bar was established. Then by applying Monte-Carlo method the corrosion probability of reinforcement under different load levels in splash zone was calculated. Calculation results demonstrated that compared with the durability reliability index considering loading effect, the reliability… More >

  • Open Access

    ARTICLE

    A New Interval Comparison Relation and Application in Interval Number Programming for Uncertain Problems

    C. Jiang1,2, X. Han1, D. Li3

    CMC-Computers, Materials & Continua, Vol.27, No.3, pp. 275-304, 2012, DOI:10.3970/cmc.2011.027.275

    Abstract For optimization or decision-making problems with interval uncertainty, the interval comparison relation plays a very important role, as only based on it a better or best decision can be determined. In this paper, a new kind of interval comparison relation termed as reliability-based possibility degree of interval is proposed to give quantitative evaluations on "how much better" of one interval than another, which is more suitable for engineering reliability analysis and numerical computation than the existing relations. In the new relation, the range of the comparing values is extended into the whole real number field, and the precise comparison is… More >

  • Open Access

    ARTICLE

    A Structural Reliability Analysis Method Based on Radial Basis Function

    M. Q. Chau1,2, X. Han1, Y. C. Bai1, C. Jiang1

    CMC-Computers, Materials & Continua, Vol.27, No.2, pp. 128-142, 2012, DOI:10.32604/cmc.2012.027.128

    Abstract The first-order reliability method (FORM) is one of the most widely used structural reliability analysis techniques due to its simplicity and efficiency. However, direct using FORM seems disability to work well for complex problems, especially related to high-dimensional variables and computation intensive numerical models. To expand the applicability of the FORM for more practical engineering problems, a response surface (RS) approach based FORM is proposed for structural reliability analysis. The radial basis function (RBF) is employed to approximate the implicit limit-state functions combined with Latin Hypercube Sampling (LHS) strategy. To guarantee the numerical stability, the improved HL-RF (iHL-RF) algorithm is… More >

  • Open Access

    ARTICLE

    Neural Network-Based Second Order Reliability Method (NNBSORM) for Laminated Composite Plates in Free Vibration

    Mena E. Tawfik1, 2, Peter L. Bishay3, *, Edward A. Sadek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 105-129, 2018, DOI:10.3970/cmes.2018.115.105

    Abstract Monte Carlo Simulations (MCS), commonly used for reliability analysis, require a large amount of data points to obtain acceptable accuracy, even if the Subset Simulation with Importance Sampling (SS/IS) methods are used. The Second Order Reliability Method (SORM) has proved to be an excellent rapid tool in the stochastic analysis of laminated composite structures, when compared to the slower MCS techniques. However, SORM requires differentiating the performance function with respect to each of the random variables involved in the simulation. The most suitable approach to do this is to use a symbolic solver, which renders the simulations very slow, although… More >

  • Open Access

    ARTICLE

    Reliability Analysis for Complex Systems based on Dynamic Evidential Network Considering Epistemic Uncertainty

    Rongxing Duan1, Yanni Lin1, Longfei Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.1, pp. 17-34, 2017, DOI:10.3970/cmes.2017.113.015

    Abstract Fault tolerant technology has greatly improved the reliability of modern systems on one hand and makes their failure mechanisms more complex on the other. The characteristics of dynamics of failure, diversity of distribution and epistemic uncertainty always exist in these systems, which increase the challenges in the reliability assessment of these systems significantly. This paper presents a novel reliability analysis framework for complex systems within which the failure rates of components are expressed in interval numbers. Specifically, it uses a dynamic fault tree (DFT) to model the dynamic fault behaviors and copes with the epistemic uncertainty using Dempster- Shafer (D-S)… More >

Displaying 101-110 on page 11 of 128. Per Page