Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ABSTRACT

    The Effect of Short-Term Exposure in PM0.1 on Cardiac Remodeling and Dysfunction in Myocardial Infraction Mice

    Yufan Huang1, Pei Niu2, Li Li2, Yunlong Huo3,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 47-47, 2019, DOI:10.32604/mcb.2019.05726

    Abstract We aimed to illustrate the association between short-term exposure PM0.1 and heart failure in myocardial infarction (MI) mice. Six-week-old ICR mice were divided into three groups randomly: sham group, MI group and MI exposure group, 12 mice in each group. LAD ligation operation was performed in MI group and MI exposure group. After postoperative two weeks MI exposure mice were put into ventilation chamber which filled with 500 ug/m3 PM0.1 for 6 hours per day, while MI group mice and sham group mice were cultivated in normal environment. After exposure 8 weeks, we use Vevo 2100… More >

  • Open Access

    ARTICLE

    The Mechanical Characteristics of Human Endothelial Cells in Response to Single Ionizing Radiation Doses By Using Micropipette Aspiration Technique

    Alireza Mohammadkarim1, Manijhe Mokhtari-Dizaji2,*, Ali Kazemian3, Hazhir Saberi4, Mohammad Mehdi Khani5, Mohsen Bakhshandeh6

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 275-287, 2019, DOI:10.32604/mcb.2019.06280

    Abstract The mechanical properties of living cells are known to be promising biomarkers when investigating the health and functions of the human body. Ionizing irradiation results in vascular injury due to endothelial damage. Thus, the current study objective was to evaluate the influence of continuous radiation doses on the mechanical properties of human umbilical vein endothelial cells (HUVECs), and to identify Young’s modulus (E) and viscoelastic behavior. Single-dose (0, 2, 4, 6, and 8 Gy) radiation was applied to HUVECs using a Cobalt-60 treatment machine in the current vitro irradiation study. Thereafter, a micropipette-aspiration technique was… More >

  • Open Access

    ARTICLE

    Warmest Congratulations to Dr. Yuan-Cheng Fung at His Centennial Celebration

    Shu Chien*

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 163-178, 2019, DOI:10.32604/mcb.2019.07689

    Abstract Professor Y.C. Fung has made tremendous impacts on science, engineering and humanity through his research and its applications, by setting the highest standards, through educating many students and their students, and providing his exemplary leadership. He has applied his profound knowledge and elegant analytical methods to the study of biomedical problems with rigor and excellence. He established the foundations of biomechanics in living tissues and organs. Through his vision of the power of “making models” to explain and predict biological phenomena, Dr. Fung opened up new vista for bioengineering, from organs-systems to molecules-genes, and has More >

  • Open Access

    ARTICLE

    Mitochondrial Remodeling in Endothelial Cells under Cyclic Stretch is Independent of Drp1 Activation

    Megumi Baba1, Aya Shinmura1, Shigeru Tada1, Taku Amo2, Akira Tsukamoto1,*

    Molecular & Cellular Biomechanics, Vol.16, No.1, pp. 1-12, 2019, DOI:10.32604/mcb.2019.05199

    Abstract Mitochondria in endothelial cells remodel morphologically when supraphysiological cyclic stretch is exerted on the cells. During remodeling, mitochondria become shorter, but how they do so remains elusive. Drp1 is a regulator of mitochondrial morphologies. It shortens mitochondria by shifting the balance from mitochondrial fusion to fission. In this study, we hypothesized that Drp1 activation is involved in mitochondrial remodeling under supraphysiological cyclic stretch. To verify the involvement of Drp1, its activation was first quantified with Western blotting, but Drp1 was not significantly activated in endothelial cells under supraphysiological cyclic stretch. Next, Drp1 activation was inhibited… More >

  • Open Access

    ARTICLE

    Computational simulation of postoperative pulmonary flow distribution in Alagille patients with peripheral pulmonary artery stenosis

    Weiguang Yang1, Frank L. Hanley2, Frandics P. Chan3, Alison L. Marsden1,4, Irene E. Vignon-Clementel5, Jeffrey A. Feinstein1,4

    Congenital Heart Disease, Vol.13, No.2, pp. 241-250, 2018, DOI:10.1111/chd.12556

    Abstract Background: Up to 90% of individuals with Alagille syndrome have congenital heart diseases. Peripheral pulmonary artery stenosis (PPS), resulting in right ventricular hypertension and pulmonary flow disparity, is one of the most common abnormalities, yet the hemodynamic effects are illdefined, and optimal patient management and treatment strategies are not well established. The purpose of this pilot study is to use recently refined computational simulation in the setting of multiple surgical strategies, to examine the influence of pulmonary artery reconstruction on hemodynamics in this population.
    Materials and Methods: Based on computed tomography angiography and cardiac catheterization data, preoperative… More >

  • Open Access

    ARTICLE

    Combining Smaller Patch, RV Remodeling and Tissue Regeneration in Pulmonary Valve Replacement Surgery Design May Lead to Better Post-Surgery RV Cardiac Function for Patients with Tetralogy of Fallot

    Zhedian Zhou1, Tal Geva2, Rahul H. Rathod2, Alexander Tang2, Chun Yang3, Kristen L. Billiar4, Dalin Tang1,*,3, Pedro del Nido5

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 99-115, 2018, DOI:10.3970/mcb.2018.00558

    Abstract Patients with repaired Tetralogy of Fallot (ToF), a congenital heart defect which includes a ventricular septal defect and severe right ventricular outflow obstruction, account for the majority of cases with late onset right ventricle (RV) failure. The current surgical approach, which includes pulmonary valve replacement/insertion (PVR), has yielded mixed results. A computational parametric study using 7 patient-specific RV/LV models based on cardiac magnetic resonance (CMR) data as "virtual surgery" was performed to investigate the impact of patch size, RV remodeling and tissue regeneration in PVR surgery design on RV cardiac functions. Two patch sizes, three… More >

  • Open Access

    ARTICLE

    Cardiac remodeling in preterm infants with prolonged exposure to a patent ductus arteriosus

    Koert de Waal1, Nilkant Phad1, Nick Collins2, Andrew Boyle2

    Congenital Heart Disease, Vol.12, No.3, pp. 364-372, 2017, DOI:10.1111/chd.12454

    Abstract Background: Sustained volume load due to a patent ductus arteriosus (PDA) leads to cardiac remodeling. Remodeling changes can become pathological and are associated with cardiovascular disease progression. Data on remodeling changes in preterm infants is not available.
    Methods: Clinical and echocardiography data were collected in preterm infants <30 weeks gestation on postnatal day 3 and then every 7–14 days until closure of the ductus arteriosus. Images were analyzed using conventional techniques and speckle tracking. Remodeling changes of infants with prolonged (>14 days) exposure to a PDA were compared to control infants without a PDA.
    Results: Thirty out of… More >

  • Open Access

    ARTICLE

    Optimal Mass Distribution Prediction for Human Proximal Femur with Bi-modulus Property

    Jiao Shi, Kun Cai, Qing H. Qin†,‡

    Molecular & Cellular Biomechanics, Vol.11, No.4, pp. 235-248, 2014, DOI:10.3970/mcb.2014.011.235

    Abstract Simulation of the mass distribution in a human proximal femur is important to provide a reasonable therapy scheme for a patient with osteoporosis. An algorithm is developed for prediction of optimal mass distribution in a human proximal femur under a given loading environment. In this algorithm, the bone material is assumed to be bi-modulus, i.e., the tension modulus is not identical to the compression modulus in the same direction. With this bi-modulus bone material, a topology optimization method, i.e., modified SIMP approach, is employed to determine the optimal mass distribution in a proximal femur. The More >

  • Open Access

    ARTICLE

    Geometrical Modeling of Cell Division and Cell Remodeling Based on Voronoi Tessellation Method

    Liqiang Lin1, Xianqiao Wang2, Xiaowei Zeng1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 203-220, 2014, DOI:10.3970/cmes.2014.098.203

    Abstract The Voronoi tessellation is employed to describe cellular patterns and to simulate cell division and cell remodeling in epithelial tissue. First, Halton sequence is utilized to generate the random generators of Voronoi cell points. The centroidal Voronoi cell center is obtained by probabilistic Lloyd's method and polygonal structure of cell distribution is modeled. Based on the polygonal shape of cells, the instantaneous mechanism of cell division is applied to simulate the cell proliferation and remodeling. Four kinds of single-cell division algorithms are designed with the consideration of cleavage angle. From these simulations, we find that… More >

  • Open Access

    REVIEW

    LIF and the heart: Just Another Brick in the Wall?*

    Fouad A. Zouein1, Mazen Kurdi1,2, George W. Booz1

    European Cytokine Network, Vol.24, No.1, pp. 11-19, 2013, DOI:10.1684/ecn.2013.0335

    Abstract Multiple studies have shown that the cytokine leukemia inhibitory factor (LIF) is protective of the myocardium in the acute stress of ischemia-reperfusion. All three major intracellular signaling pathways that are activated by LIF in cardiac myocytes have been linked to actions that protect against oxidative stress and cell death, either at the level of the mitochondrion or via nuclear transcription. In addition, LIF has been shown to contribute to post-myocardial infarction cardiac repair and regeneration, by stimulating the homing of bone marrow-derived cardiac progenitors to the injured myocardium, the differentiation of resident cardiac stem cells… More >

Displaying 21-30 on page 3 of 38. Per Page