Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    A Super-Resolution Generative Adversarial Network for Remote Sensing Images Based on Improved Residual Module and Attention Mechanism

    Yifan Zhang1, Yong Gan2,*, Mengke Tang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068880 - 09 December 2025

    Abstract High-resolution remote sensing imagery is essential for critical applications such as precision agriculture, urban management planning, and military reconnaissance. Although significant progress has been made in single-image super-resolution (SISR) using generative adversarial networks (GANs), existing approaches still face challenges in recovering high-frequency details, effectively utilizing features, maintaining structural integrity, and ensuring training stability—particularly when dealing with the complex textures characteristic of remote sensing imagery. To address these limitations, this paper proposes the Improved Residual Module and Attention Mechanism Network (IRMANet), a novel architecture specifically designed for remote sensing image reconstruction. IRMANet builds upon the Super-Resolution… More >

  • Open Access

    ARTICLE

    GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation

    Yanting Zhang1, Qiyue Liu1,2, Chuanzhao Tian1,2,*, Xuewen Li1, Na Yang1, Feng Zhang1, Hongyue Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068403 - 10 November 2025

    Abstract High-resolution remote sensing images (HRSIs) are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies. However, their significant scale changes and wealth of spatial details pose challenges for semantic segmentation. While convolutional neural networks (CNNs) excel at capturing local features, they are limited in modeling long-range dependencies. Conversely, transformers utilize multihead self-attention to integrate global context effectively, but this approach often incurs a high computational cost. This paper proposes a global-local multiscale context network (GLMCNet) to extract both global and local multiscale contextual information from HRSIs.… More >

  • Open Access

    ARTICLE

    Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images

    Binghong Zhang, Jialing Zhou, Xinye Zhou, Jia Zhao, Jinchun Zhu, Guangpeng Fan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068309 - 10 November 2025

    Abstract Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring, urban planning, and disaster assessment. However, traditional methods exhibit deficiencies in detail recovery and noise suppression, particularly when processing complex landscapes (e.g., forests, farmlands), leading to artifacts and spectral distortions that limit practical utility. To address this, we propose an enhanced Super-Resolution Generative Adversarial Network (SRGAN) framework featuring three key innovations: (1) Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing; (2) A multi-loss joint optimization strategy… More >

  • Open Access

    ARTICLE

    Remote Sensing Imagery for Multi-Stage Vehicle Detection and Classification via YOLOv9 and Deep Learner

    Naif Al Mudawi1,*, Muhammad Hanzla2, Abdulwahab Alazeb1, Mohammed Alshehri1, Haifa F. Alhasson3, Dina Abdulaziz AlHammadi4, Ahmad Jalal2,5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4491-4509, 2025, DOI:10.32604/cmc.2025.065490 - 30 July 2025

    Abstract Unmanned Aerial Vehicles (UAVs) are increasingly employed in traffic surveillance, urban planning, and infrastructure monitoring due to their cost-effectiveness, flexibility, and high-resolution imaging. However, vehicle detection and classification in aerial imagery remain challenging due to scale variations from fluctuating UAV altitudes, frequent occlusions in dense traffic, and environmental noise, such as shadows and lighting inconsistencies. Traditional methods, including sliding-window searches and shallow learning techniques, struggle with computational inefficiency and robustness under dynamic conditions. To address these limitations, this study proposes a six-stage hierarchical framework integrating radiometric calibration, deep learning, and classical feature engineering. The workflow… More >

  • Open Access

    ARTICLE

    Attention Driven YOLOv5 Network for Enhanced Landslide Detection Using Satellite Imagery of Complex Terrain

    Naveen Chandra1, Himadri Vaidya2,3, Suraj Sawant4, Shilpa Gite5,6, Biswajeet Pradhan7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3351-3375, 2025, DOI:10.32604/cmes.2025.064395 - 30 June 2025

    Abstract Landslide hazard detection is a prevalent problem in remote sensing studies, particularly with the technological advancement of computer vision. With the continuous and exceptional growth of the computational environment, the manual and partially automated procedure of landslide detection from remotely sensed images has shifted toward automatic methods with deep learning. Furthermore, attention models, driven by human visual procedures, have become vital in natural hazard-related studies. Hence, this paper proposes an enhanced YOLOv5 (You Only Look Once version 5) network for improved satellite-based landslide detection, embedded with two popular attention modules: CBAM (Convolutional Block Attention Module) More >

  • Open Access

    ARTICLE

    Remote Sensing Image Information Granulation Transformer for Semantic Segmentation

    Haoyang Tang1,2, Kai Zeng1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1485-1506, 2025, DOI:10.32604/cmc.2025.064441 - 09 June 2025

    Abstract Semantic segmentation provides important technical support for Land cover/land use (LCLU) research. By calculating the cosine similarity between feature vectors, transformer-based models can effectively capture the global information of high-resolution remote sensing images. However, the diversity of detailed and edge features within the same class of ground objects in high-resolution remote sensing images leads to a dispersed embedding distribution. The dispersed feature distribution enlarges feature vector angles and reduces cosine similarity, weakening the attention mechanism’s ability to identify the same class of ground objects. To address this challenge, remote sensing image information granulation transformer for… More >

  • Open Access

    ARTICLE

    CG-FCLNet: Category-Guided Feature Collaborative Learning Network for Semantic Segmentation of Remote Sensing Images

    Min Yao1,*, Guangjie Hu1, Yaozu Zhang2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2751-2771, 2025, DOI:10.32604/cmc.2025.060860 - 16 April 2025

    Abstract Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing. Despite the success of Convolutional Neural Networks (CNNs), they often fail to capture inter-layer feature relationships and fully leverage contextual information, leading to the loss of important details. Additionally, due to significant intra-class variation and small inter-class differences in remote sensing images, CNNs may experience class confusion. To address these issues, we propose a novel Category-Guided Feature Collaborative Learning Network (CG-FCLNet), which enables fine-grained feature extraction and adaptive fusion. Specifically, we design a Feature Collaborative Learning Module (FCLM)… More >

  • Open Access

    ARTICLE

    Coupling the Power of YOLOv9 with Transformer for Small Object Detection in Remote-Sensing Images

    Mohammad Barr*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 593-616, 2025, DOI:10.32604/cmes.2025.062264 - 11 April 2025

    Abstract Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance and management. However, challenges like small object detection, scale variation, and the presence of closely packed objects in these images hinder accurate detection. Additionally, the motion blur effect further complicates the identification of such objects. To address these issues, we propose enhanced YOLOv9 with a transformer head (YOLOv9-TH). The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms. We… More >

  • Open Access

    ARTICLE

    FIBTNet: Building Change Detection for Remote Sensing Images Using Feature Interactive Bi-Temporal Network

    Jing Wang1,2,*, Tianwen Lin1, Chen Zhang1, Jun Peng1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4621-4641, 2024, DOI:10.32604/cmc.2024.053206 - 12 September 2024

    Abstract In this paper, a feature interactive bi-temporal change detection network (FIBTNet) is designed to solve the problem of pseudo change in remote sensing image building change detection. The network improves the accuracy of change detection through bi-temporal feature interaction. FIBTNet designs a bi-temporal feature exchange architecture (EXA) and a bi-temporal difference extraction architecture (DFA). EXA improves the feature exchange ability of the model encoding process through multiple space, channel or hybrid feature exchange methods, while DFA uses the change residual (CR) module to improve the ability of the model decoding process to extract different features More >

  • Open Access

    ARTICLE

    ConvNeXt-UperNet-Based Deep Learning Model for Road Extraction from High-Resolution Remote Sensing Images

    Jing Wang1,2,*, Chen Zhang1, Tianwen Lin1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1907-1925, 2024, DOI:10.32604/cmc.2024.052597 - 15 August 2024

    Abstract When existing deep learning models are used for road extraction tasks from high-resolution images, they are easily affected by noise factors such as tree and building occlusion and complex backgrounds, resulting in incomplete road extraction and low accuracy. We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt. Then, ConvNeXt is used as the backbone network, which cooperates with the perceptual analysis network UPerNet, retains the detection head of the semantic segmentation, and builds a new model ConvNeXt-UPerNet to suppress noise interference. Training on the open-source DeepGlobe and CHN6-CUG… More >

Displaying 1-10 on page 1 of 43. Per Page