Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (512)
  • Open Access

    ARTICLE

    A Survey of Anti-forensic for Face Image Forgery

    Haitao Zhang*

    Journal of Information Hiding and Privacy Protection, Vol.4, No.1, pp. 41-51, 2022, DOI:10.32604/jihpp.2022.031707 - 17 June 2022

    Abstract Deep learning related technologies, especially generative adversarial network, are widely used in the fields of face image tampering and forgery. Forensics researchers have proposed a variety of passive forensic and related anti-forensic methods for image tampering and forgery, especially face images, but there is still a lack of overview of anti-forensic methods at this stage. Therefore, this paper will systematically discuss the anti-forensic methods for face image tampering and forgery. Firstly, this paper expounds the relevant background, including the relevant tampering and forgery methods and forensic schemes of face images. The former mainly includes four More >

  • Open Access

    ARTICLE

    An Overview of Adversarial Attacks and Defenses

    Kai Chen*, Jinwei Wang, Jiawei Zhang

    Journal of Information Hiding and Privacy Protection, Vol.4, No.1, pp. 15-24, 2022, DOI:10.32604/jihpp.2022.029006 - 17 June 2022

    Abstract In recent years, machine learning has become more and more popular, especially the continuous development of deep learning technology, which has brought great revolutions to many fields. In tasks such as image classification, natural language processing, information hiding, multimedia synthesis, and so on, the performance of deep learning has far exceeded the traditional algorithms. However, researchers found that although deep learning can train an accurate model through a large amount of data to complete various tasks, the model is vulnerable to the example which is modified artificially. This technology is called adversarial attacks, while the More >

  • Open Access

    ARTICLE

    A Two Stream Fusion Assisted Deep Learning Framework for Stomach Diseases Classification

    Muhammad Shahid Amin1, Jamal Hussain Shah1, Mussarat Yasmin1, Ghulam Jillani Ansari2, Muhamamd Attique Khan3, Usman Tariq4, Ye Jin Kim5, Byoungchol Chang6,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4423-4439, 2022, DOI:10.32604/cmc.2022.030432 - 16 June 2022

    Abstract Due to rapid development in Artificial Intelligence (AI) and Deep Learning (DL), it is difficult to maintain the security and robustness of these techniques and algorithms due to emergence of novel term adversary sampling. Such technique is sensitive to these models. Thus, fake samples cause AI and DL model to produce diverse results. Adversarial attacks that successfully implemented in real world scenarios highlight their applicability even further. In this regard, minor modifications of input images cause “Adversarial Attacks” that altered the performance of competing attacks dramatically. Recently, such attacks and defensive strategies are gaining lot… More >

  • Open Access

    ARTICLE

    Adversarial Training Against Adversarial Attacks for Machine Learning-Based Intrusion Detection Systems

    Muhammad Shahzad Haroon*, Husnain Mansoor Ali

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3513-3527, 2022, DOI:10.32604/cmc.2022.029858 - 16 June 2022

    Abstract Intrusion detection system plays an important role in defending networks from security breaches. End-to-end machine learning-based intrusion detection systems are being used to achieve high detection accuracy. However, in case of adversarial attacks, that cause misclassification by introducing imperceptible perturbation on input samples, performance of machine learning-based intrusion detection systems is greatly affected. Though such problems have widely been discussed in image processing domain, very few studies have investigated network intrusion detection systems and proposed corresponding defence. In this paper, we attempt to fill this gap by using adversarial attacks on standard intrusion detection datasets… More >

  • Open Access

    ARTICLE

    A Unified Decision-Making Technique for Analysing Treatments in Pandemic Context

    Fawaz Alsolami1, Abdullah Saad Al-Malaise Alghamdi2, Asif Irshad Khan1,*, Yoosef B. Abushark1, Abdulmohsen Almalawi1, Farrukh Saleem2, Alka Agrawal3, Rajeev Kumar4, Raees Ahmad Khan3

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2591-2618, 2022, DOI:10.32604/cmc.2022.025703 - 16 June 2022

    Abstract The COVID-19 pandemic has triggered a global humanitarian disaster that has never been seen before. Medical experts, on the other hand, are undecided on the most valuable treatments of therapy because people ill with this infection exhibit a wide range of illness indications at different phases of infection. Further, this project aims to undertake an experimental investigation to determine which treatments for COVID-19 disease is the most effective and preferable. The research analysis is based on vast data gathered from professionals and research journals, making this study a comprehensive reference. To solve this challenging task,… More >

  • Open Access

    REVIEW

    Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs

    KANIZ FATEMA, ZACHARY LARSON, JARED BARROTT*

    BIOCELL, Vol.46, No.10, pp. 2177-2193, 2022, DOI:10.32604/biocell.2022.020141 - 13 June 2022

    Abstract Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of… More >

  • Open Access

    ARTICLE

    Semi-Supervised Medical Image Segmentation Based on Generative Adversarial Network

    Yun Tan1,2, Weizhao Wu2, Ling Tan3, Haikuo Peng2, Jiaohua Qin2,*

    Journal of New Media, Vol.4, No.3, pp. 155-164, 2022, DOI:10.32604/jnm.2022.031113 - 13 June 2022

    Abstract At present, segmentation for medical image is mainly based on fully supervised model training, which consumes a lot of time and labor for dataset labeling. To address this issue, we propose a semi-supervised medical image segmentation model based on a generative adversarial network framework for automated segmentation of arteries. The network is mainly composed of two parts: a segmentation network for medical image segmentation and a discriminant network for evaluating segmentation results. In the initial stage of network training, a fully supervised training method is adopted to make the segmentation network and the discrimination network More >

  • Open Access

    ARTICLE

    Deep Feature Bayesian Classifier for SAR Target Recognition with Small Training Set

    Liguo Zhang1,2, Zilin Tian1, Yan Zhang3,*, Tong Shuai4, Shuo Liang4, Zhuofei Wu5

    Journal of New Media, Vol.4, No.2, pp. 59-71, 2022, DOI:10.32604/jnm.2022.029360 - 13 June 2022

    Abstract In recent years, deep learning algorithms have been popular in recognizing targets in synthetic aperture radar (SAR) images. However, due to the problem of overfitting, the performance of these models tends to worsen when just a small number of training data are available. In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition, in this paper, we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model (RBnet) for SAR image target… More >

  • Open Access

    ARTICLE

    Classification of Arrhythmia Based on Convolutional Neural Networks and Encoder-Decoder Model

    Jian Liu1,*, Xiaodong Xia1, Chunyang Han2, Jiao Hui3, Jim Feng4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 265-278, 2022, DOI:10.32604/cmc.2022.029227 - 18 May 2022

    Abstract As a common and high-risk type of disease, heart disease seriously threatens people’s health. At the same time, in the era of the Internet of Thing (IoT), smart medical device has strong practical significance for medical workers and patients because of its ability to assist in the diagnosis of diseases. Therefore, the research of real-time diagnosis and classification algorithms for arrhythmia can help to improve the diagnostic efficiency of diseases. In this paper, we design an automatic arrhythmia classification algorithm model based on Convolutional Neural Network (CNN) and Encoder-Decoder model. The model uses Long Short-Term More >

  • Open Access

    ARTICLE

    Hyper-Parameter Optimization of Semi-Supervised GANs Based-Sine Cosine Algorithm for Multimedia Datasets

    Anas Al-Ragehi1, Said Jadid Abdulkadir1,2,*, Amgad Muneer1,2, Safwan Sadeq3, Qasem Al-Tashi4,5

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 2169-2186, 2022, DOI:10.32604/cmc.2022.027885 - 18 May 2022

    Abstract Generative Adversarial Networks (GANs) are neural networks that allow models to learn deep representations without requiring a large amount of training data. Semi-Supervised GAN Classifiers are a recent innovation in GANs, where GANs are used to classify generated images into real and fake and multiple classes, similar to a general multi-class classifier. However, GANs have a sophisticated design that can be challenging to train. This is because obtaining the proper set of parameters for all models-generator, discriminator, and classifier is complex. As a result, training a single GAN model for different datasets may not produce… More >

Displaying 261-270 on page 27 of 512. Per Page