Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    A Cross-Plane Color Image Encryption Algorithm Based on 1D-SLM

    Xiaohong Wang, Huiqing Wu, Yuying Ma, Shuzhen Huang*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 1093-1108, 2023, DOI:10.32604/csse.2023.036652

    Abstract With the rapid development of 5G technology, it has become fast and easy for people to transmit information on the Internet. Digital images can express information more intuitively, so transmitting information through images has excellent applications. This paper uses a new chaotic system called 1D-Sin-Logistic-Map (1D-SLM). 1D-SLM has two control parameters, which can provide larger parameter space, and the parameter space in the chaotic state is continuous. Through Lyapunov exponent analysis (LE), bifurcation diagrams analysis, spectral entropy analysis (SE), and 0-1 test, it is verified that 1D-SLM has complex dynamic behavior and is very suitable for cryptography. Compared with other… More >

  • Open Access

    ARTICLE

    Selective Mapping Scheme for Universal Filtered Multicarrier

    Akku Madhusudhan*, Sudhir Kumar Sharma

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1273-1282, 2023, DOI:10.32604/iasc.2023.030765

    Abstract The next step in mobile communication technology, known as 5G, is set to go live in a number of countries in the near future. New wireless applications have high data rates and mobility requirements, which have posed a challenge to mobile communication technology researchers and designers. 5G systems could benefit from the Universal Filtered Multicarrier (UFMC). UFMC is an alternate waveform to orthogonal frequency-division multiplexing (OFDM), in filtering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference (ICI) between neighbouring users is reduced via the sub-band filtering process, which reduces out-of-band… More >

  • Open Access

    ARTICLE

    Peak-Average-Power Ratio Techniques for 5G Waveforms Using D-SLM and D-PTS

    Himanshu Sharma1, karthikeyan Rajagopal2, G. Gugapriya3, Rajneesh Pareek1, Arun Kumar4, Haya Mesfer Alshahrani5, Mohamed K. Nour6, Hany Mahgoub7, Mohamed Mousa8, Anwer Mustafa Hilal9,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1199-1210, 2023, DOI:10.32604/csse.2023.030909

    Abstract Multicarrier Waveform (MCW) has several advantages and plays a very important role in cellular systems. Fifth generation (5G) MCW such as Non-Orthogonal Multiple Access (NOMA) and Filter Bank Multicarrier (FBMC) are thought to be important in 5G implementation. High Peak to Average Power Ratio (PAPR) is seen as a serious concern in MCW since it reduces the efficiency of amplifier use in the user devices. The paper presents a novel Divergence Selective Mapping (DSLM) and Divergence Partial Transmission Sequence (D-PTS) for 5G waveforms. It is seen that the proposed D-SLM and PTS lower PAPR with low computational complexity. The work… More >

  • Open Access

    ARTICLE

    A Novel Peak-to-Average Power Ratio Reduction for 5G Advanced Waveforms

    Rajneesh Pareek1, Karthikeyan Rajagopal2, Himanshu Sharma1, Nidhi Gour1, Arun Kumar3, Sami Althahabi4, Haya Mesfer Alshahrani5, Mohamed Mousa6, Manar Ahmed Hamza7,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1637-1648, 2022, DOI:10.32604/cmc.2022.029563

    Abstract Multi and single carrier waveforms are utilized in cellular systems for high-speed data transmission. In The Fifth Generation (5G) system, several waveform techniques based on multi carrier waveforms are proposed. However, the Peak to Average Power Ratio (PAPR) is seen as one of the significant concerns in advanced waveforms as it degrades the efficiency of the framework. The proposed article documents the study, progress, and implementation of PAPR reduction algorithms for the 5G radio framework. We compare the PAPR algorithm performance for advanced and conventional waveforms. The simulation results reveal that the advanced Partial Transmission Sequence (PTS) and Selective Mapping… More >

  • Open Access

    ARTICLE

    Performance Analysis of PTS PAPR Reduction Method for NOMA Waveform

    Himanshu Sharma1, Nidhi Gour1, Sumit Chakravarty2, Fahad Alraddady3, Mehedi Masud4, Rajneesh Pareek1, Arun Kumar5,*

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1367-1375, 2022, DOI:10.32604/iasc.2022.025655

    Abstract Cellular systems utilize single and multicarrier waveforms for high-speed data transmission. The Fifth-Generation (5G) system proposes several techniques based on multicarrier waveforms. However, the Peak to Average Power Ratio (PAPR) is one of the significant concerns in advanced waveforms as it degrades the framework's efficiency. Non Orthogonal Multiple Access (NOMA) can provide massive connectivity, which is the crucial requirement of the Internet of Things (IoT). The 3rd generation tested NOMA applications in downlink and uplink transmission. However, NOMA uplink transmission in the power domain has performance degradation and is not considered a possible technique in 3rd generation power projects (3GPP).… More >

  • Open Access

    ARTICLE

    An Efficient Hybrid PAPR Reduction for 5G NOMA-FBMC Waveforms

    Arun Kumar1,*, Sivabalan Ambigapathy2, Mehedi Masud3, Emad Sami Jaha4, Sumit Chakravarty5, Kanchan Sengar1

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 2967-2981, 2021, DOI:10.32604/cmc.2021.019092

    Abstract The article introduces Non-Orthogonal Multiple Access (NOMA) and Filter Bank Multicarrier (FBMC), known as hybrid waveform (NOMA-FBMC), as two of the most deserving contenders for fifth-generation (5G) network. High spectrum access and clampdown of spectrum outflow are unique characteristics of hybrid NOMA-FBMC. We compare the spectral efficiency of Orthogonal Frequency Division Multiplexing (OFDM), FBMC, NOMA, and NOMA-FBMC. It is seen that the hybrid waveform outperforms the existing waveforms. Peak to Average Power Ratio (PAPR) is regarded as a significant issue in multicarrier waveforms. The combination of Selective Mapping-Partial Transmit Sequence (SLM-PTS) is an effective way to minimize large peak power… More >

  • Open Access

    ARTICLE

    PAPR Reduction in NOMA by Using Hybrid Algorithms

    Mohit Kumar Sharma, Arun Kumar*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1391-1406, 2021, DOI:10.32604/cmc.2021.017666

    Abstract Non-orthogonal multiple access (NOMA) is gaining considerable attention due to its features, such as low out-of-band radiation, signal detection capability, high spectrum gain, fast data rate, and massive D2D connectivity. It may be considered for 5G networks. However, the high peak-to-average power ratio (PAPR) is viewed as a significant disadvantage of a NOMA waveform, and it weakens the quality of signals and the throughput of the scheme. In this article, we introduce a modified NOMA system by employing a block of wavelet transform, an alternative to FFT (Fast Fourier transform). The modified system combines the details of fractional frequency and… More >

  • Open Access

    ARTICLE

    Position Sensorless Control System of Permanent Magnet Synchronous Linear Motor Based on Sliding Mode Observer with an Improved Phase-Locked Loop

    Jin Zhang1, Youliang Tang1, Feng Yu2,*

    Energy Engineering, Vol.118, No.4, pp. 1083-1094, 2021, DOI:10.32604/EE.2021.014482

    Abstract In this paper, position sensorless control system of permanent magnet synchronous linear motor (PMSLM) based on sliding mode observer (SMO) with an improved phase-locked loop (PLL) is studied. Firstly, according to the mathematical model, a SMO is designed for sensorless control PMSLM drive. Thereafter, an improved PLL is proposed to tackle the imperfection of data overflow existed in the traditional PLL. The designed SMO incorporating with the improved PLL can be effectively suppress the pulsation of the estimated position and hence the chattering of the derived electrical angular velocity. At last, simulated and experimental results are presented to verify the… More >

  • Open Access

    ARTICLE

    Prediction of Melt Pool Dimension and Residual Stress Evolution with Thermodynamically-Consistent Phase Field and Consolidation Models during Re-Melting Process of SLM

    Kang-Hyun Lee1, Gun Jin Yun1,2,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 87-112, 2021, DOI:10.32604/cmc.2020.012688

    Abstract Re-melting process has been utilized to mitigate the residual stress level in the selective laser melting (SLM) process in recent years. However, the complex consolidation mechanism of powder and the different material behavior after the first laser melting hinder the direct implementation of the re-melting process. In this work, the effects of re-melting on the temperature and residual stress evolution in the SLM process are investigated using a thermo-mechanically coupled finite element model. The degree of consolidation is incorporated in the energy balance equation based on the thermodynamically-consistent phase-field approach. The drastic change of material properties due to the variation… More >

  • Open Access

    ARTICLE

    Design and Manufacture of Bionic Porous Titanium Alloy Spinal Implant Based on Selective Laser Melting (SLM)

    Xiaojun Chen1, Di Wang1,*, Wenhao Dou1, Yimeng Wang1, Yongqiang Yang1, Jianhua Wang2, Jie Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1099-1117, 2020, DOI:10.32604/cmes.2020.09619

    Abstract In order to meet the clinical requirements of spine surgery, this paper proposed the exploratory research of computer-aided design and selective laser melting (SLM) fabrication of a bionic porous titanium spine implant. The structural design of the spinal implant is based on CT scanning data to ensure correct matching, and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment. The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15 μm, and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine. The… More >

Displaying 1-10 on page 1 of 12. Per Page