Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Targeted anti-tumor synergistic effects of Myc decoy oligodeoxynucleotides-loaded selenium nanostructure combined with chemoradiotherapy on LNCaP prostate cancer cells

    ROGHAYEH GHORBANI1, MAHMOUD GHARBAVI2, ALI SHARAFI3,4, ELHAM RISMANI5, HAMED REZAEEJAM6, YOUSEF MORTAZAVI1,*, BEHROOZ JOHARI3,*

    Oncology Research, Vol.32, No.1, pp. 101-125, 2024, DOI:10.32604/or.2023.044741

    Abstract In the present study, we investigated the synergistic effects of targeted methotrexate-selenium nanostructure containing Myc decoy oligodeoxynucleotides along with X-irradiation exposure as a combination therapy on LNCaP prostate cancer cells. Myc decoy ODNs were designed based on the promoter of Bcl-2 gene and analyzed by molecular docking and molecular dynamics assays. ODNs were loaded on the synthesized Se@BSA@Chi-MTX nanostructure. The physicochemical characteristics of nanostructures were determined by FTIR, DLS, UV-vis, TEM, EDX, in vitro release, and hemolysis tests. Subsequently, the cytotoxicity properties of them with and without X-irradiation were investigated by uptake, MTT, cell cycle, apoptosis, and scratch assays on… More > Graphic Abstract

    Targeted anti-tumor synergistic effects of Myc decoy oligodeoxynucleotides-loaded selenium nanostructure combined with chemoradiotherapy on LNCaP prostate cancer cells

  • Open Access

    ARTICLE

    Inhibition of H2O2-induced TM3 cell apoptosis by oxidative stress by lentinan functionalized selenium nanoparticles through JAK2/STAT-3 and P53 pathways

    MIAOMIAO LI1,#, ZILIN ZHENG1,#, JUNYI KE1, JIEYI LUO1, FAN JIANG1, YANXIA QU1, BING ZHU2, YINGHUA LI2,*, LIANDONG ZUO1,*

    BIOCELL, Vol.47, No.6, pp. 1397-1405, 2023, DOI:10.32604/biocell.2023.027971

    Abstract Background: Nano-selenium has been widely used in antiviral and anticancer therapy, and has the advantages of good targeting and low toxicity. For the first time, we combined male reproduction with nano-selenium to investigate its antioxidant effect. This study investigated the protective effect of lentinan functionalized selenium nanoparticles on oxidative stress injury of the hydrogen peroxide (H2O2)-induced Leydig cell line, TM3. Methods: The suitable concentration of nano-selenium treatment to promote cell proliferation was also discussed. The concentration of 4 μM could significantly promote the growth of TM3 cells. Oxidative stress damage was caused using an 800 μM concentration of hydrogen peroxide.… More >

  • Open Access

    ARTICLE

    Inhibition of H2O2-induced apoptosis of GC2-spg cells by functionalized selenium nanoparticles with lentinan through ROS-mediated ERK/p53 signaling pathways

    MIAOMIAO LI1,#, DANYANG CHEN2,#, JUNYI KE1, RUILIN ZHENG2, JINGYAO SU2, ZILIN ZHENG1, JIEYI LUO1, HANRAN MAI1, FAN JIANG1, YANXIA QU1, XIAOQIONG GU1, BING ZHU2, YINGHUA LI2,*, LIANDONG ZUO1,*

    BIOCELL, Vol.47, No.2, pp. 401-408, 2023, DOI:10.32604/biocell.2023.025154

    Abstract A H2O2-induced oxidative stress injury cell model was established to investigate the antioxidant effect of nano-selenium on mouse spermatocyte lines and the regulation mechanism of the expression level and activity of selenium-containing antioxidant enzymes induced by oxidative stress. A safe and effective nano-drug system of functionalized selenium-containing nanoparticles (SeNPs) was developed with lentinan (LNT) (SeNPs@LNT). Mice spermatocyte line GC2-spg cells were treated with SeNPs@LNT (1, 2, 4, 8, 16, 32 μM) for 24–72 h to evaluate the cytotoxicity of selenium. GC2-spg cells were randomly divided into the following groups: control, hydrogen peroxide (H2O2), SeNPs@LNT, and H2O2+SeNPs@LNT groups. H2O2+SeNPs@LNT group was… More >

Displaying 1-10 on page 1 of 3. Per Page