Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    An Abrasion Resistant TPU/SH-SiO2 Superhydrophobic Coating for Anti-Icing and Anti-Corrosion Applications

    Jiakun Shi1, Bizhu Zhang1, Xin Zhou1, Runxian Liu1, Jun Hu1,2,*, Huaan Zheng1, Zhong Chen3,*

    Journal of Renewable Materials, Vol.10, No.5, pp. 1239-1255, 2022, DOI:10.32604/jrm.2022.018045

    Abstract As a passive anti-icing strategy, properly designed superhydrophobic coatings can demonstrate outstanding performances. However, common preparation strategies for superhydrophobic coatings often lead to environmental pollution, high energy-consumption, high-cost and other undesirable issues. Besides, the durability of superhydrophobic coating also plagues its commercial application. In this paper, we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane (TPU) and modified SiO2 particles (SH-SiO2). Both materials are non-toxicity, low-cost, and commercial available. Our methodology has the following advantages: use of minimal amounts of formulation, take the most streamlined technical route, and no waste material. These advantages make… More > Graphic Abstract

    An Abrasion Resistant TPU/SH-SiO<sub>2</sub> Superhydrophobic Coating for Anti-Icing and Anti-Corrosion Applications

  • Open Access

    ARTICLE

    Simulation of Elastic and Fatigue Properties of Epoxy/SiO2 Particle Composites through Molecular Dynamics

    Gaoge Zhao, Jianzhong Chen, Yong Lv*, Xiaoyu Zhang, Li Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 339-357, 2021, DOI:10.32604/cmes.2021.015388

    Abstract The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO2 nanocomposite is studied in this paper. Here, the cross-linked epoxy resins formed by the combination of DGEBA and 1,3-phenylenediamine are used as the matrix phase, and spherical SiO2 particles are used as the reinforcement phase. In order to simulate the elastic modulus and long-term performance of the composite material at room temperature, the simulated temperature is set to 298 K and the mass fraction of SiO2 particles is set to 28.9%. The applied strain rate is 109/s during the simulation of the elastic modulus.… More >

  • Open Access

    ARTICLE

    Multi-Scale Superhydrophobic Anti-Icing Coating for Wind Turbine Blades

    Jiangyong Bao1, Jianjun He1,*, Biao Chen2, Kaijun Yang1, Jun Jie2, Ruifeng Wang1, Shihao Zhang2

    Energy Engineering, Vol.118, No.4, pp. 947-959, 2021, DOI:10.32604/EE.2021.014535

    Abstract As a surface functional material, super-hydrophobic coating has great application potential in wind turbine blade anti-icing, self-cleaning and drag reduction. In this study, ZnO and SiO2 multi-scale superhydrophobic coatings with mechanical flexibility were prepared by embedding modified ZnO and SiO2 nanoparticles in PDMS. The prepared coating has a higher static water contact angle (CA is 153°) and a lower rolling angle (SA is 3.3°), showing excellent super-hydrophobicity. Because of its excellent superhydrophobic ability and micro-nano structure, the coating has good anti-icing ability. Under the conditions of −10°C and 60% relative humidity, the coating can delay the freezing time by 1511S,… More >

  • Open Access

    ARTICLE

    Comparative Thermal Performance in SiO2–H2O and (MoS2–SiO2)–H2O Over a Curved Stretching Semi-Infinite Region: A Numerical Investigation

    Basharat Ullah1, Umar Khan1, Hafiz Abdul Wahab1, Ilyas Khan2,*, Dumitru Baleanu3,4,5, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 947-960, 2021, DOI:10.32604/cmc.2020.012430

    Abstract The investigation of Thermal performance in nanofluids and hybrid nanofluids over a curved stretching infinite region strengthens its roots in engineering and industry. Therefore, the comparative thermal analysis in SiO2–H2O and (MoS2–SiO2)–H2O is conducted over curved stretching surface. The model is reduced in the dimensional version via similarity transformation and then treated numerically. The velocity and thermal behavior for both the fluids is decorated against the preeminent parameters. From the analysis, it is examined that the motion of under consideration fluids declines against Fr and λ. The thermal performance enhances for higher volumetric fraction and λ. Further, it is noticed… More >

  • Open Access

    ARTICLE

    Mechanical Properties and Fire Retardancy of Wood Flour/High-Density Polyethylene Composites Reinforced with Continuous Honeycomb-Like Nano-SiO2 Network and Fire Retardant

    Haiyang Zhou1,2, Xiaoyu Wang3, Xiaolong Hao1,2, Qingwen Wang1,2,*, Rongxian Ou1,2,*

    Journal of Renewable Materials, Vol.8, No.5, pp. 485-498, 2020, DOI:10.32604/jrm.2020.010263

    Abstract The mechanical properties of wood flour/high-density polyethylene composites (WPC) were improved by adding a small amount of nano-SiO2 to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO2 network. The wood flour was modified with a fire retardant (a mixture of sodium octabonate and amidine urea phosphate) to improve its fire retardancy. The flexural properties, creep resistance, thermal expansion, and fire retardancy of the WPC were compared to a control (WPCCTRL) without nano-SiO2 or fire retardant. The flexural strength and modulus of the WPC containing only 0.55 wt.% nano-SiO2 were 6.6% and 9.1% higher than the control, respectively, while the… More >

Displaying 1-10 on page 1 of 5. Per Page