Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Fusing Geometric and Temporal Deep Features for High-Precision Arabic Sign Language Recognition

    Yazeed Alkhrijah1,2, Shehzad Khalid3, Syed Muhammad Usman4,*, Amina Jameel3, Danish Hamid5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1113-1141, 2025, DOI:10.32604/cmes.2025.068726 - 31 July 2025

    Abstract Arabic Sign Language (ArSL) recognition plays a vital role in enhancing the communication for the Deaf and Hard of Hearing (DHH) community. Researchers have proposed multiple methods for automated recognition of ArSL; however, these methods face multiple challenges that include high gesture variability, occlusions, limited signer diversity, and the scarcity of large annotated datasets. Existing methods, often relying solely on either skeletal data or video-based features, struggle with generalization and robustness, especially in dynamic and real-world conditions. This paper proposes a novel multimodal ensemble classification framework that integrates geometric features derived from 3D skeletal joint… More >

  • Open Access

    ARTICLE

    ALCTS—An Assistive Learning and Communicative Tool for Speech and Hearing Impaired Students

    Shabana Ziyad Puthu Vedu1,*, Wafaa A. Ghonaim2, Naglaa M. Mostafa3, Pradeep Kumar Singh4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2599-2617, 2025, DOI:10.32604/cmc.2025.062695 - 16 April 2025

    Abstract Hearing and Speech impairment can be congenital or acquired. Hearing and speech-impaired students often hesitate to pursue higher education in reputable institutions due to their challenges. However, the development of automated assistive learning tools within the educational field has empowered disabled students to pursue higher education in any field of study. Assistive learning devices enable students to access institutional resources and facilities fully. The proposed assistive learning and communication tool allows hearing and speech-impaired students to interact productively with their teachers and classmates. This tool converts the audio signals into sign language videos for the… More >

  • Open Access

    ARTICLE

    VTAN: A Novel Video Transformer Attention-Based Network for Dynamic Sign Language Recognition

    Ziyang Deng1, Weidong Min1,2,3,*, Qing Han1,2,3, Mengxue Liu1, Longfei Li1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2793-2812, 2025, DOI:10.32604/cmc.2024.057456 - 17 February 2025

    Abstract Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first… More >

  • Open Access

    REVIEW

    A Survey on Chinese Sign Language Recognition: From Traditional Methods to Artificial Intelligence

    Xianwei Jiang1, Yanqiong Zhang1,*, Juan Lei1, Yudong Zhang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1-40, 2024, DOI:10.32604/cmes.2024.047649 - 16 April 2024

    Abstract Research on Chinese Sign Language (CSL) provides convenience and support for individuals with hearing impairments to communicate and integrate into society. This article reviews the relevant literature on Chinese Sign Language Recognition (CSLR) in the past 20 years. Hidden Markov Models (HMM), Support Vector Machines (SVM), and Dynamic Time Warping (DTW) were found to be the most commonly employed technologies among traditional identification methods. Benefiting from the rapid development of computer vision and artificial intelligence technology, Convolutional Neural Networks (CNN), 3D-CNN, YOLO, Capsule Network (CapsNet) and various deep neural networks have sprung up. Deep Neural… More >

  • Open Access

    ARTICLE

    Japanese Sign Language Recognition by Combining Joint Skeleton-Based Handcrafted and Pixel-Based Deep Learning Features with Machine Learning Classification

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Abu Saleh Musa Miah1, Kota Suzuki1, Koki Hirooka1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2605-2625, 2024, DOI:10.32604/cmes.2023.046334 - 11 March 2024

    Abstract Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities. In Japan, approximately 360,000 individuals with hearing and speech disabilities rely on Japanese Sign Language (JSL) for communication. However, existing JSL recognition systems have faced significant performance limitations due to inherent complexities. In response to these challenges, we present a novel JSL recognition system that employs a strategic fusion approach, combining joint skeleton-based handcrafted features and pixel-based deep learning features. Our system incorporates two distinct streams: the first stream extracts crucial handcrafted features, emphasizing the capture of hand and body… More >

  • Open Access

    REVIEW

    Recent Advances on Deep Learning for Sign Language Recognition

    Yanqiong Zhang, Xianwei Jiang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2399-2450, 2024, DOI:10.32604/cmes.2023.045731 - 11 March 2024

    Abstract Sign language, a visual-gestural language used by the deaf and hard-of-hearing community, plays a crucial role in facilitating communication and promoting inclusivity. Sign language recognition (SLR), the process of automatically recognizing and interpreting sign language gestures, has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world. The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR. This paper presents a comprehensive and up-to-date analysis of the advancements, challenges, and opportunities in deep learning-based sign… More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Hand Gesture Recognition: Applications in Deaf Communication and Healthcare

    Khursheed Aurangzeb1, Khalid Javeed2, Musaed Alhussein1, Imad Rida3, Syed Irtaza Haider1, Anubha Parashar4,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 127-144, 2024, DOI:10.32604/cmc.2023.042886 - 30 January 2024

    Abstract Hand gestures have been used as a significant mode of communication since the advent of human civilization. By facilitating human-computer interaction (HCI), hand gesture recognition (HGRoc) technology is crucial for seamless and error-free HCI. HGRoc technology is pivotal in healthcare and communication for the deaf community. Despite significant advancements in computer vision-based gesture recognition for language understanding, two considerable challenges persist in this field: (a) limited and common gestures are considered, (b) processing multiple channels of information across a network takes huge computational time during discriminative feature extraction. Therefore, a novel hand vision-based convolutional neural network… More >

  • Open Access

    ARTICLE

    Arabic Sign Language Gesture Classification Using Deer Hunting Optimization with Machine Learning Model

    Badriyya B. Al-onazi1, Mohamed K. Nour2, Hussain Alshahran3, Mohamed Ahmed Elfaki3, Mrim M. Alnfiai4, Radwa Marzouk5, Mahmoud Othman6, Mahir M. Sharif7, Abdelwahed Motwakel8,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3413-3429, 2023, DOI:10.32604/cmc.2023.035303 - 31 March 2023

    Abstract Sign language includes the motion of the arms and hands to communicate with people with hearing disabilities. Several models have been available in the literature for sign language detection and classification for enhanced outcomes. But the latest advancements in computer vision enable us to perform signs/gesture recognition using deep neural networks. This paper introduces an Arabic Sign Language Gesture Classification using Deer Hunting Optimization with Machine Learning (ASLGC-DHOML) model. The presented ASLGC-DHOML technique mainly concentrates on recognising and classifying sign language gestures. The presented ASLGC-DHOML model primarily pre-processes the input gesture images and generates feature More >

  • Open Access

    ARTICLE

    Deep Learning-Based Sign Language Recognition for Hearing and Speaking Impaired People

    Mrim M. Alnfiai*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1653-1669, 2023, DOI:10.32604/iasc.2023.033577 - 05 January 2023

    Abstract Sign language is mainly utilized in communication with people who have hearing disabilities. Sign language is used to communicate with people having developmental impairments who have some or no interaction skills. The interaction via Sign language becomes a fruitful means of communication for hearing and speech impaired persons. A Hand gesture recognition system finds helpful for deaf and dumb people by making use of human computer interface (HCI) and convolutional neural networks (CNN) for identifying the static indications of Indian Sign Language (ISL). This study introduces a shark smell optimization with deep learning based automated… More >

  • Open Access

    ARTICLE

    A Novel Action Transformer Network for Hybrid Multimodal Sign Language Recognition

    Sameena Javaid*, Safdar Rizvi

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 523-537, 2023, DOI:10.32604/cmc.2023.031924 - 22 September 2022

    Abstract Sign language fills the communication gap for people with hearing and speaking ailments. It includes both visual modalities, manual gestures consisting of movements of hands, and non-manual gestures incorporating body movements including head, facial expressions, eyes, shoulder shrugging, etc. Previously both gestures have been detected; identifying separately may have better accuracy, but much communicational information is lost. A proper sign language mechanism is needed to detect manual and non-manual gestures to convey the appropriate detailed message to others. Our novel proposed system contributes as Sign Language Action Transformer Network (SLATN), localizing hand, body, and facial… More >

Displaying 1-10 on page 1 of 13. Per Page