Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Feature Selection Using Artificial Immune Network: An Approach for Software Defect Prediction

    Bushra Mumtaz1, Summrina Kanwal2,*, Sultan Alamri2, Faiza Khan1

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 669-684, 2021, DOI:10.32604/iasc.2021.018405

    Abstract Software Defect Prediction (SDP) is a dynamic research field in the software industry. A quality software product results in customer satisfaction. However, the higher the number of user requirements, the more complex will be the software, with a correspondingly higher probability of failure. SDP is a challenging task requiring smart algorithms that can estimate the quality of a software component before it is handed over to the end-user. In this paper, we propose a hybrid approach to address this particular issue. Our approach combines the feature selection capability of the Optimized Artificial Immune Networks (Opt-aiNet) More >

  • Open Access

    REVIEW

    Software Defect Prediction Using Supervised Machine Learning Techniques: A Systematic Literature Review

    Faseeha Matloob1, Shabib Aftab1,2, Munir Ahmad2, Muhammad Adnan Khan3,*, Areej Fatima4, Muhammad Iqbal2, Wesam Mohsen Alruwaili5, Nouh Sabri Elmitwally5,6

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 403-421, 2021, DOI:10.32604/iasc.2021.017562

    Abstract Software defect prediction (SDP) is the process of detecting defect-prone software modules before the testing stage. The testing stage in the software development life cycle is expensive and consumes the most resources of all the stages. SDP can minimize the cost of the testing stage, which can ultimately lead to the development of higher-quality software at a lower cost. With this approach, only those modules classified as defective are tested. Over the past two decades, many researchers have proposed methods and frameworks to improve the performance of the SDP process. The main research topics are More >

  • Open Access

    ARTICLE

    Software Defect Prediction Based on Non-Linear Manifold Learning and Hybrid Deep Learning Techniques

    Kun Zhu1, Nana Zhang1, Qing Zhang2, Shi Ying1, *, Xu Wang3

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1467-1486, 2020, DOI:10.32604/cmc.2020.011415

    Abstract Software defect prediction plays a very important role in software quality assurance, which aims to inspect as many potentially defect-prone software modules as possible. However, the performance of the prediction model is susceptible to high dimensionality of the dataset that contains irrelevant and redundant features. In addition, software metrics for software defect prediction are almost entirely traditional features compared to the deep semantic feature representation from deep learning techniques. To address these two issues, we propose the following two solutions in this paper: (1) We leverage a novel non-linear manifold learning method - SOINN Landmark… More >

  • Open Access

    ARTICLE

    Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-Objective Optimization

    Nana Zhang1, Kun Zhu1, Shi Ying1, *, Xu Wang2

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 279-308, 2020, DOI:10.32604/cmc.2020.011001

    Abstract Software defect prediction plays an important role in software quality assurance. However, the performance of the prediction model is susceptible to the irrelevant and redundant features. In addition, previous studies mostly regard software defect prediction as a single objective optimization problem, and multi-objective software defect prediction has not been thoroughly investigated. For the above two reasons, we propose the following solutions in this paper: (1) we leverage an advanced deep neural network—Stacked Contractive AutoEncoder (SCAE) to extract the robust deep semantic features from the original defect features, which has stronger discrimination capacity for different classes… More >

  • Open Access

    ARTICLE

    KAEA: A Novel Three-Stage Ensemble Model for Software Defect Prediction

    Nana Zhang1, Kun Zhu1, Shi Ying1, *, Xu Wang2

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 471-499, 2020, DOI:10.32604/cmc.2020.010117

    Abstract Software defect prediction is a research hotspot in the field of software engineering. However, due to the limitations of current machine learning algorithms, we can’t achieve good effect for defect prediction by only using machine learning algorithms. In previous studies, some researchers used extreme learning machine (ELM) to conduct defect prediction. However, the initial weights and biases of the ELM are determined randomly, which reduces the prediction performance of ELM. Motivated by the idea of search based software engineering, we propose a novel software defect prediction model named KAEA based on kernel principal component analysis… More >

  • Open Access

    ARTICLE

    Within-Project and Cross-Project Software Defect Prediction Based on Improved Transfer Naive Bayes Algorithm

    Kun Zhu1, Nana Zhang1, Shi Ying1, *, Xu Wang2

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 891-910, 2020, DOI:10.32604/cmc.2020.08096

    Abstract With the continuous expansion of software scale, software update and maintenance have become more and more important. However, frequent software code updates will make the software more likely to introduce new defects. So how to predict the defects quickly and accurately on the software change has become an important problem for software developers. Current defect prediction methods often cannot reflect the feature information of the defect comprehensively, and the detection effect is not ideal enough. Therefore, we propose a novel defect prediction model named ITNB (Improved Transfer Naive Bayes) based on improved transfer Naive Bayesian… More >

Displaying 11-20 on page 2 of 16. Per Page