Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,434)
  • Open Access

    ABSTRACT

    Does Contemporary Bicruciate Retaining Total Knee Arthroplasty Restore the Native Knee Kinematics? A Systematic Review of In-vitro Cadaveric Investigations.

    Yun Peng1, Guoan Li1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 128-129, 2019, DOI:10.32604/mcb.2019.07392

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    In Vitro Studies of the Synergy Between Mechanical Loading and Genetics Within Human Induced Pluripotent Stem Cell Derived Micro-Scale Engineered Heart Tissues

    Nathaniel Huebsch1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 107-108, 2019, DOI:10.32604/mcb.2019.08524

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    The Dependence of Diffusio-Phoretic Mobility and Aggregation Properties of Proteins on Intermolecular Interaction in Confined System

    Jiachen Wei1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 103-104, 2019, DOI:10.32604/mcb.2019.07721

    Abstract Phoretic flow can be generated by different types of gradient (e.g. temperature, concentration, or charge gradient) [1-3]. Within micro-to-nano confined system, the diffusio-phoretic property for proteins differs dramatically from that obtained in bulk condition, due to concentration fluctuation that emerges at microscopic level induced by specific and nonspecific interactions between protein and co-solute [4-5]. The phoretic mobility of protein individuals and complex in solute gradients can be theoretically described by continuum model [1-2] that neglects microscopic heterogeneity and determined experimentally by microfluidics [6], but the underlying mechanism of diffusio-phoretic motion for confined protein still remains unclear.
    Our approach to… More >

  • Open Access

    ABSTRACT

    From Biomechanics to Molecular Affinity to Systems Immunology – My Path in Biomedical Engineering That is Inspired by Dr. YC Fung

    Ning Jiang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 102-102, 2019, DOI:10.32604/mcb.2019.07486

    Abstract Force is not only involved in motion, but also involved in molecular interactions that guide cells to execute important physiological functions. Getting to know Dr. Fung at an early age shaped my college major decision, which lead me into the field of biomedical engineering. Applying a force-based measurement tool to study T cell receptor interaction with ligands in graduate school prepared me to use technology development as a foundation to answer important biological and clinical questions.
    By combining engineering principle, quantitative modeling, and a deep understanding of biology and medicine, my current research focuses in systems immunology and immune… More >

  • Open Access

    ABSTRACT

    The Effect of Cellular Shape on Differentiation of Dental Pulp Stem Cells

    Yuhsuan Wang1,2, Yuwei Guo1,2, Lisha Zheng1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 99-99, 2019, DOI:10.32604/mcb.2019.06995

    Abstract Many studies have shown that cell shape effects cell chromatin aggregation, gene expression, protein synthesis, cell growth, apoptosis, and cytoskeletal rearrangement [1, 2]. Dental pulp stem cells (DPSCs) are capable of osteogenic, dentinogenic, chondrogenic, and neurogenic differentiation. They are regarded as a promising candidate for tissue regeneration. How the cell shape regulates their cell behavior is still unknown. We used micropatterning technology to design single cell patterns in a 1:1, 1:2, 1:4, 1:8, 1:16 length-width ratio of rectangles with the same area. The results indicated that cell shape rearranged the cytoskeleton of DPSCs. The nuclear shape also affected by different… More >

  • Open Access

    ABSTRACT

    Macrophages as A Mechano-Transducer to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells

    Lili Dong1, Yang Song1,*, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 78-78, 2019, DOI:10.32604/mcb.2019.07130

    Abstract It has been widely recognized that stem cells possess the potential of osteogenic differentiation, which greatly contribute to bone repair. Recently, accumulating evidences have indicated that mechanical cues are required for bone repair [1,2]. However, how local and recruited stem cells in the bone architecture receive the mechanical signals is poorly understood [3,4]. The purpose of this study is to demonstrate that macrophages potentially transduce the mechanical signals for stem cell osteogenic lineage. This demonstration has been carried out through a co-culture system to investigate the effect of macrophages which subjected to cyclic stretch on the osteogenic potential of bone… More >

  • Open Access

    ABSTRACT

    Systems Modeling of Cardiomyocyte Mechanobiology

    Philip M. Tan1, Kyle S. Buchholz2, Shulin Cao2, Yasser Aboelkassem2, Jeffrey H. Omens2, Andrew D. McCulloch2,*, Jeffrey J. Saucerman1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 1-3, 2019, DOI:10.32604/mcb.2019.05693

    Abstract In this article, we summarize our systems model of cardiomyocyte mechano-signaling published in PLoS Computational Biology and discuss new approaches to extending these models to predict cardiac myocyte gene expression in response to stretch. More >

  • Open Access

    ABSTRACT

    Preface: The First International Symposium on Biomechanics and Mechanobiology in Cardiovascular System

    Zhiyong Li1,2,*, Dalin Tang1,3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 1-7, 2019, DOI:10.32604/mcb.2019.05830

    Abstract Cardiovascular disease remains as the leading cause of death worldwide, and the technologies developed by different groups need to be communicated and shared with all related research communities for a boarder implementation. Challenges in imaging technology, mathematical modelling, material description, mechanical representation, disease progression, prediction methods, and final transition to clinical applications are calling for collaborative effort of the entire research community to act together and bring research effort closer to actual clinical applications. Researchers from different disciplines need to reach out to share their expertise, as well as to listen to other people to understand the big picture, understand… More >

  • Open Access

    ARTICLE

    Vibration Based Fault Diagnosis of a Hydraulic Brake System using Variational Mode Decomposition (VMD)

    R. Jegadeeshwaran1, V. Sugumaran2, K.P. Soman3

    Structural Durability & Health Monitoring, Vol.10, No.1, pp. 81-97, 2014, DOI:10.3970/sdhm.2014.010.081

    Abstract In automobile, brake system is an essential part responsible for control of the vehicle. Vibration signals of a rotating machine contain the dynamic information about its health condition. Many research papers have reported the suitability of vibration signals for fault diagnosis applications. Many of them are based on (Fast Fourier Transform) FFT, which have their own drawback with nonstationary signals. Hence, there is a need for development of new methodologies to infer diagnostic information from such non stationary signals. This paper uses vibration signals acquired from a hydraulic brake system under good and simulated faulty conditions for the purpose of… More >

  • Open Access

    ARTICLE

    Structure Health Monitoring (SHM) System Trade Space Analysis

    Salman A. Albinali1, David R. Jacques2

    Structural Durability & Health Monitoring, Vol.10, No.1, pp. 1-17, 2014, DOI:10.3970/sdhm.2014.010.001

    Abstract An analytic approach to exploring the tradespace associated with Structural Health Monitoring (SHM) systems is presented. Modeling and simulation of the life cycle of a legacy aircraft and the expected operational and maintenance events that could occur is shown. A focus on the SHM system detection of a significant crack length and the possibility of False Alarm (FA), miss detection and mishap events is investigated. The modeling approach allows researchers to explore the tradespace associated with safe and critical crack lengths, sensor thresholds, scheduled maintenance intervals, falsely triggered maintenance actions, and mishaps due to missed detections. As one might expect,… More >

Displaying 2041-2050 on page 205 of 2434. Per Page