Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,423)
  • Open Access

    ARTICLE

    Isolation of Mesenchymal Stem Cells from Bone Marrow with Distinct Differentiation and Engraftment in Developing Mice

    F. Li1, X. Wang1, X. Liao1, C. Niyibizi1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 167-168, 2006, DOI:10.32604/mcb.2006.003.167

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Quantum Dot Labeling of Stem Cells during Proliferation and Differentiation

    E. K. Moioli1, B. Shah1, P. A. Clark1, M. Stroscio1, J. J. Mao1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 153-155, 2006, DOI:10.32604/mcb.2006.003.153

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Altered Cellular Mechanics during Osteogenic Differentiation of Human Mesenchymal Stem Cells

    I. A. Titushkin1, M. Cho1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 151-151, 2006, DOI:10.32604/mcb.2006.003.151

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Adult Stem Cells and Skeletal Repair and Regeneration

    C. Niyibizi1, F. Li1, X. Wang1, X. Liao1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 149-149, 2006, DOI:10.32604/mcb.2006.003.149

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Modeling and Measurement of a Tunable Acoustoelastic System

    Deborah Fowler1, Garrett Lopp2, Dhiraj Bansal3, Ryan Schultz4, Matthew Brake5, Micah Shepherd6

    Sound & Vibration, Vol.52, No.3, pp. 12-17, 2018, DOI:10.32604/sv.2018.03864

    Abstract Acoustoelastic coupling occurs when a hollow structure’s in-vacuo mode aligns with an acoustic mode of the internal cavity. The impact of this coupling on the total dynamic response of the structure can be quite severe depending on the similarity of the modal frequencies and shapes. Typically, acoustoelastic coupling is not a design feature, but rather an unintended result that must be remedied as modal tests of structures are often used to correlate or validate finite element models of the uncoupled structure. Here, however, a test structure is intentionally designed such that multiple structural and acoustic modes are well-aligned, resulting in… More >

  • Open Access

    ARTICLE

    High-g Shocking Testing of the Martlet Wireless Sensing System

    Xi Liu, Xinjun Dong, Yang Wang*, Jacob Dodson, Bryan Joyce

    Sound & Vibration, Vol.52, No.3, pp. 6-11, 2018, DOI:10.32604/sv.2018.03857

    Abstract This article reports the latest development of a wireless sensing system, named Martlet, on high-g shock acceleration measurement. The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller, with clock frequency programmable up to 90 MHz. The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation. In addition, the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards. In this study, a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system (MEMS) high-g accelerometers. Besides low-pass and high-pass… More >

  • Open Access

    ARTICLE

    Multiple Scattering Between Adjacent Sound Sources in Head-Related Transfer Function Measurement System

    Guangzheng Yu1,*, Yu Liu1,2, Bosun Xie1, Huali Zhou1

    Sound & Vibration, Vol.53, No.4, pp. 151-159, 2019, DOI:10.32604/sv.2019.04644

    Abstract To accelerate head-related transfer functions (HRTFs) measurement, two or more independent sound sources are usually employed in the measurement system. However, the multiple scattering between adjacent sound sources may influence the accuracy of measurement. On the other hand, the directivity of sound source could induce measurement error. Therefore, a model consisting of two spherical sound sources with approximate omni-directivity and a rigid-spherical head is proposed to evaluate the errors in HRTF measurement caused by multiple scattering between sources. An example of analysis using multipole re-expansion indicates that the error of ipsilateral HRTFs are within the bound of ± 1.0 dB… More >

  • Open Access

    REVIEW

    Adipose-derived mesenchymal stem/stromal cells: from the lab bench to the basic concepts for clinical translation

    Yesica Romina FRONTINI-LÓPEZ1, Aldana Daniela GOJANOVICH1, Diego MASONE1,2, Diego Martín BUSTOS1,3, Marina UHART1

    BIOCELL, Vol.42, No.3, pp. 67-78, 2018, DOI:10.32604/biocell.2018.07013

    Abstract In the last years, much work has shown that the most effective repair system of the body is represented by stem cells, which are defined as undifferentiated precursors that own unlimited or prolonged self-renewal ability, which also have the potential to transform themselves into various cell types through differentiation.All tissues that form the body contain many different types of somatic cells, along with stem cells that are called ‘mesenchymal stem (or stromal) cells’ (MSC). In certain circumstances, some of these MSC migrate to injured tissues to replace dead cells or to undergo differentiation to repair it.The discovery of MSC has… More >

  • Open Access

    ARTICLE

    Theoretical Study of the Energies of the Oscillating System with a Well- Distributed Mass of the Spring

    Yewan Ma, Hansen Chang, Zhaowang Wu, Yanyan Jiang, Juan Li, Xunchang Yin, Quanjin Liu, Lihua Zhang*

    Sound & Vibration, Vol.53, No.4, pp. 139-149, 2019, DOI:10.32604/sv.2019.04622

    Abstract The energy of a spring with a well-distributed mass ms is theoretically studied in this paper. The solution of the wave equation is derived in detail, and then the kinetic energy and potential energy of the spring are studied with the wave equation, as well as the kinetic energy of the oscillating mass M. The kinetic energy and potential energy of the spring, and total energy are numerically simulated for different ratios ms/M with considering the spring’s mass, which makes the property of energy of the oscillating system understood easily. More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study of Structural Identification Using Non-Linear Resonant Decay Method

    Mehdi Sarmast1,*, Hamed Ghafari2, Jan R. Wright3

    Sound & Vibration, Vol.53, No.3, pp. 75-95, 2019, DOI:10.32604/sv.2019.04193

    Abstract One of the practical approaches in identifying structures is the non-linear resonant decay method which identifies a non-linear dynamic system utilizing a model based on linear modal space containing the underlying linear system and a small number of extra terms that exhibit the non-linear effects. In this paper, the method is illustrated in a simulated system and an experimental structure. The main objective of the non-linear resonant decay method is to identify the non-linear dynamic systems based on the use of a multi-shaker excitation using appropriated excitation which is obtained from the force appropriation approach. The experimental application of the… More >

Displaying 2061-2070 on page 207 of 2423. Per Page