Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Comparison and Analysis of Heat Transfer and Inflow Rate for Supercritical Carbon Dioxide Based on Different Tubes

    Huda Adel Hassan Ali, Ameer Abed Jaddoa*, Jafaar Mohamme Daif

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 443-465, 2023, DOI:10.32604/fhmt.2023.042288

    Abstract This paper is twofold. First, the effect of non-linear thermophysical property variation was presented using supercritical carbon dioxide (SCO2) around the thermodynamic pivotal point. The second part exhibits an experimental examination of the heat transfer (HT) behaviour of SCO2 in a helical tube with a hydraulic diameter of 2 mm at different mass fluxes (MF), heat fluxes (HF), and pressures (P). The experiments were carried out based on various pressures, mass fluxes, and heat fluxes for both scenarios. CO2 was cooled in a 2 mm diameter serpentine tube made of copper material. The experimental results showed that HT degradation could… More > Graphic Abstract

    Comparison and Analysis of Heat Transfer and Inflow Rate for Supercritical Carbon Dioxide Based on Different Tubes

  • Open Access

    ARTICLE

    Numerical Analysis of Labyrinth Seal Performance for the Impeller Backface Cavity of a Supercritical CO2 Radial Inflow Turbine

    Jinguang Yang, Feng Zhao, Min Zhang*, Yan Liu, Xiaofang Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 935-953, 2021, DOI:10.32604/cmes.2021.014176

    Abstract For a radial inflow turbine (RIT), leakage flow in impeller backface cavity has critical impacts on aerodynamic performance of the RIT and axial force acting on the RIT impeller. In order to control this leakage flow, different types of labyrinth seals are numerically studied in this paper based on a supercritical carbon dioxide (S-CO2) RIT. The effects of seal clearance and cavity outlet pressure are first analyzed, and the impacts of seal design parameters, including height, number and shape of seal teeth, are evaluated. Results indicate that adding labyrinth seal can improve cavity pressure and hence adequately inhibits leakage flow.… More >

  • Open Access

    ARTICLE

    Applying ANN, ANFIS and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2

    Amin Bemani1, Alireza Baghban2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5, 6, 7, Peter Csiba7, Annamaria R. Varkonyi-Koczy5, 7

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1175-1204, 2020, DOI:10.32604/cmc.2020.07723

    Abstract In the present work, a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide. Four different machine learning algorithms of radial basis function, multi-layer perceptron (MLP), artificial neural networks (ANN), least squares support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS) are used to model the solubility of different acids in carbon dioxide based on the temperature, pressure, hydrogen number, carbon number, molecular weight, and the dissociation constant of acid. To evaluate the proposed models, different graphical and statistical analyses, along with novel sensitivity analysis, are carried out.… More >

  • Open Access

    ARTICLE

    Numerical Study on Rock Breaking Mechanism of Supercritical CO2 Jet Based on Smoothed Particle Hydrodynamics

    Xiaofeng Yang1, *, Yanhong Li1, Aiguo Nie1, Sheng Zhi2, Liyuan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 1141-1157, 2020, DOI:10.32604/cmes.2020.08538

    Abstract Supercritical carbon dioxide (Sc-CO2) jet rock breaking is a nonlinear impact dynamics problem involving many factors. Considering the complexity of the physical properties of the Sc-CO2 jet and the mesh distortion problem in dealing with large deformation problems using the finite element method, the smoothed particle hydrodynamics (SPH) method is used to simulate and analyze the rock breaking process by Sc-CO2 jet based on the derivation of the jet velocity-density evolution mathematical model. The results indicate that there exisits an optimal rock breaking temperature by Sc-CO2. The volume and length of the rock fracture increase with the rising of the… More >

  • Open Access

    ARTICLE

    Supercritical Carbon Dioxide Treated Kenaf Bast Pulp Fiber Reinforcement in Epoxy Composite

    N. A. Sri Aprilia1, M. S. Nurul Atiqah2, Zhari Ismail3, C. Y. Loo2, Chaturbhuj K. Saurabh2, Rudi Dungani4, Abdul Khalil H.P.S2*

    Journal of Renewable Materials, Vol.5, No.5, pp. 380-387, 2017, DOI:10.7569/JRM.2017.634130

    Abstract Due to environmental concerns, green composites have become a highly researched material. In the present study, kenaf fiber was used as reinforcement in epoxy-based composite with weight fraction ranges from 0, 5, 10, and 15% (w/w of resin). The ratio of epoxy to hardener was 65:32.5. Prior to incorporation, kenaf bast fiber underwent Soda-AQ pulping followed by total chlorine-free bleaching (OAZP sequence). The obtained pulp was then subjected to supercritical carbon dioxide extraction (SCE) treatment. It was observed that epoxy composite with 10% of fiber loading demonstrated the highest mechanical properties with a tensile strength of 64 MPa, tensile modulus… More >

Displaying 1-10 on page 1 of 5. Per Page