Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,863)
  • Open Access

    ARTICLE

    Review: Possible strategies for the control and stabilization of Marangoni flow in laterally heated floating zones

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 171-188, 2005, DOI:10.3970/fdmp.2005.001.171

    Abstract The paper presents a comparative and critical analysis of some theoretical/experimental/numerical arguments concerning the possible stabilization of the surface-tension-driven (Marangoni) flow in the Floating Zone technique and in various related fluid-dynamic models. It is conceived as a natural extension of the focused overview published in Cryst. Res. Tech. 40(6), 531, (2005) where much room was devoted to discuss the intrinsic physical mechanisms responsible for three-dimensional and oscillatory flows in a variety of technological processes. Here, a significant effort is provided to illustrate the genesis of possible control strategies (many of which are still in a very embryonic condition), the underlying… More >

  • Open Access

    ARTICLE

    Active Metamaterials for Modulation and Detection

    Sameer R. Sonkusale1, Wangren Xu1, Saroj Rout1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 301-315, 2014, DOI:10.3970/cmc.2014.039.301

    Abstract This paper illustrates some new concepts in the area of hybrid metamaterials, which are metamaterials that are embedded with active circuit elements such as transistors. Such transistor/metamaterial hybrids can exhibit some exotic electromagnetic properties which can be exploited for unusual and exciting functions. Two specific examples are provided. In one application, terahertz (THz) modulator based on embedding of psuedomorphic high electron mobility transistor (pHEMT) within the metamaterial resonator, all implemented monolithically in a commercial gallium arsenide (GaAs) technology is presented. In another application, a detector array based on metamaterial perfect absorber for room-temperature detection of gigahertz (GHz) radiation within each… More >

  • Open Access

    ARTICLE

    Process-dependent Thermal-Mechanical Behaviors of an Advanced Thin-Flip-Chip-on-Flex Interconnect Technology with Anisotropic Conductive Film Joints

    Hsien-Chie Cheng1,2, Chien-Hao Ma1, Ching-Feng Yu3, Su-Tsai Lu4, Wen-Hwa Chen2,3

    CMC-Computers, Materials & Continua, Vol.38, No.3, pp. 129-154, 2013, DOI:10.3970/cmc.2013.038.129

    Abstract User experiences for electronic devices with high portability and flexibility, good intuitive human interfaces and low cost have driven the development of semiconductor technology toward flexible electronics and display. In this study proposes, an advanced flexible interconnect technology is proposed for flexible electronics, in which an ultra-thin IC chip having a great number of micro-bumps is bonded onto a very thin flex substrate using an epoxy-based anisotropic conductive film (ACF) to form fine-pitch and reliable interconnects or joints (herein termed ACF-typed thin-flip-chip-on-flex (TFCOF) technology). The electrical and thermal -mechanical performances of the micro-joints are the key to the feasibility and… More >

  • Open Access

    ARTICLE

    Regularized meshless method for antiplane piezoelectricity problems with multiple inclusions

    K.H. Chen1,2, J.H. Kao3, J.T. Chen4

    CMC-Computers, Materials & Continua, Vol.9, No.3, pp. 253-280, 2009, DOI:10.3970/cmc.2009.009.253

    Abstract In this paper, solving antiplane piezoelectricity problems with multiple inclusions are attended by using the regularized meshless method (RMM). This is made possible that the troublesome singularity in the MFS disappears by employing the subtracting and adding-back techniques. The governing equations for linearly electro-elastic medium are reduced to two uncoupled Laplace's equations. The representations of two solutions of the two uncoupled system are obtained by using the RMM. By matching interface conditions, the linear algebraic system is obtained. Finally, typical numerical examples are presented and discussed to demonstrate the accuracy of the solutions. More >

  • Open Access

    ARTICLE

    Wavelet-based Inclusion Detection in Cantilever Beams

    Zheng Li1,2, Wei Zhang1, Kezhuang Gong1

    CMC-Computers, Materials & Continua, Vol.9, No.3, pp. 209-228, 2009, DOI:10.3970/cmc.2009.009.209

    Abstract In this paper, continuous wavelet transform has been applied to inclusion detection in cantilever beams. By means of FEM, a cantilever beam with an inclusion is subjected to an impact on its free end, and its stress wave propagation process is calculated. Here, two kinds of inclusions which are distinct in material behavior have been discussed. And we change the inclusion's sizes in the beam and set it in three different positions to simulate some complicated situations. For soft inclusion, the results show that the arrival times of incident and reflective wave are distinguishable by performing Gabor wavelet transform and… More >

  • Open Access

    ARTICLE

    Fourier Analysis of Mode Shapes of Damaged Beams

    Kanchi Venkatesulu Reddy1, Ranjan Ganguli2

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 79-98, 2007, DOI:10.3970/cmc.2007.005.079

    Abstract This paper investigates the effect of damage on beams with fixed boundary conditions using Fourier analysis of the mode shapes in spatial domain. A finite element model is used to obtain the mode shapes of a damaged fixed-fixed beam. Then the damaged beams are studied using a spatial Fourier analysis. This approach contrasts with the typical time domain application of Fourier analysis for vibration problems. It is found that damage causes considerable change in the Fourier coefficients of the mode shapes. The Fourier coefficients, especially the higher harmonics, are found to be sensitive to both damage size and location and… More >

  • Open Access

    ARTICLE

    A Heterogeneous Virtual Machines Resource Allocation Scheme in Slices Architecture of 5G Edge Datacenter

    Changming Zhao1,2,*, Tiejun Wang2, Alan Yang3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 423-437, 2019, DOI:10.32604/cmc.2019.07501

    Abstract In the paper, we investigate the heterogeneous resource allocation scheme for virtual machines with slicing technology in the 5G/B5G edge computing environment. In general, the different slices for different task scenarios exist in the same edge layer synchronously. A lot of researches reveal that the virtual machines of different slices indicate strong heterogeneity with different reserved resource granularity. In the condition, the allocation process is a NP hard problem and difficult for the actual demand of the tasks in the strongly heterogeneous environment. Based on the slicing and container concept, we propose the resource allocation scheme named Two-Dimension allocation and… More >

  • Open Access

    ARTICLE

    Text Detection and Recognition for Natural Scene Images Using Deep Convolutional Neural Networks

    Xianyu Wu1, Chao Luo1, Qian Zhang2, Jiliu Zhou1, Hao Yang1, 3, *, Yulian Li1

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 289-300, 2019, DOI:10.32604/cmc.2019.05990

    Abstract Words are the most indispensable information in human life. It is very important to analyze and understand the meaning of words. Compared with the general visual elements, the text conveys rich and high-level moral information, which enables the computer to better understand the semantic content of the text. With the rapid development of computer technology, great achievements have been made in text information detection and recognition. However, when dealing with text characters in natural scene images, there are still some limitations in the detection and recognition of natural scene images. Because natural scene image has more interference and complexity than… More >

  • Open Access

    ARTICLE

    Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection

    Ling Tan1,*, Chong Li2, Jingming Xia2, Jun Cao3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 275-288, 2019, DOI:10.32604/cmc.2019.03735

    Abstract Due to the widespread use of the Internet, customer information is vulnerable to computer systems attack, which brings urgent need for the intrusion detection technology. Recently, network intrusion detection has been one of the most important technologies in network security detection. The accuracy of network intrusion detection has reached higher accuracy so far. However, these methods have very low efficiency in network intrusion detection, even the most popular SOM neural network method. In this paper, an efficient and fast network intrusion detection method was proposed. Firstly, the fundamental of the two different methods are introduced respectively. Then, the self-organizing feature… More >

  • Open Access

    ARTICLE

    An Intrusion Detection Algorithm Based on Feature Graph

    Xiang Yu1, Zhihong Tian2, Jing Qiu2,*, Shen Su2,*, Xiaoran Yan3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 255-274, 2019, DOI:10.32604/cmc.2019.05821

    Abstract With the development of Information technology and the popularization of Internet, whenever and wherever possible, people can connect to the Internet optionally. Meanwhile, the security of network traffic is threatened by various of online malicious behaviors. The aim of an intrusion detection system (IDS) is to detect the network behaviors which are diverse and malicious. Since a conventional firewall cannot detect most of the malicious behaviors, such as malicious network traffic or computer abuse, some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches. However, there are very few… More >

Displaying 2811-2820 on page 282 of 2863. Per Page