Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,149)
  • Open Access

    ARTICLE

    Error Bounds forDiscrete Geometric Approach

    Lorenzo Codecasa1, Francesco Trevisan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.2, pp. 155-180, 2010, DOI:10.3970/cmes.2010.059.155

    Abstract Electromagnetic problems spatially discretized by the so called Discrete Geometric Approach are considered, where Discrete Counterparts of Constitutive Relations are discretized within an Energetic Approach. Pairs of oriented dual grids are considered in which the primal grid is composed of (oblique) parallelepipeds, (oblique) triangular prisms and tetrahedra and the dual grid is obtained according to the barycentric subdivision. The focus of the work is the evaluation of the constants bounding the approximation error of the electromagnetic field; the novelty is that such constants will be expressed in terms of the geometrical details of oriented dual grids. A numerical analysis will… More >

  • Open Access

    ARTICLE

    Galerkin Boundary Integral Analysis forthe 3D Helmholtz Equation

    M. R. Swager1, L. J. Gray2, S. Nintcheu Fata2

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.3, pp. 297-312, 2010, DOI:10.3970/cmes.2010.058.297

    Abstract A linear element Galerkin boundary integral analysis for the three-dimensional Helmholtz equation is presented. The emphasis is on solving acoustic scattering by an open (crack) surface, and to this end both a dual equation formulation and a symmetric hypersingular formulation have been developed. All singular integrals are defined and evaluated via a boundary limit process, facilitating the evaluation of the (finite) hypersingular Galerkin integral. This limit process is also the basis for the algorithm for post-processing of the surface gradient. The analytic integrations required by the limit process are carried out by employing a Taylor series expansion for the exponential… More >

  • Open Access

    ARTICLE

    Convergence of Electromagnetic Problems Modelled by Discrete Geometric Approach

    Lorenzo Codecasa1, Francesco Trevisan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 15-44, 2010, DOI:10.3970/cmes.2010.058.015

    Abstract This paper starts from the spatial discretization of an electromagnetic problem over pairs of oriented grids, one dual of the other, according to the so called Discrete Geometric Approach(DGA) to computational electromagnetism; the Cell Method or the Finite Integration Technique are examples of such an approach. The core of the work is providing for the first time a convergence analysis when the discrete counter-parts of constitutive relations are computed by means of an energetic framework. More >

  • Open Access

    ARTICLE

    New Interpretation to Variational Iteration Method: Convolution Iteration Method Based on Duhamel's Principle for Dynamic System Analysis

    Yunhua Li1,2, Yunze Li3, Chieh-Li Chen4, Cha’o-Kuang Chen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 1-14, 2010, DOI:10.3970/cmes.2010.058.001

    Abstract Addressing the identification problem of the general Lagrange multiplier in the He's variational iteration method, this paper proposes a new kind of method based on Duhamel's principle for the dynamic system response analysis. In this method, we have constructed an analytical iteration formula in terms of the convolution for the residual error at the nth iteration, and have given a new interpretation to He's variational iteration method. The analysis illustrates that the computational result of this method is equal to that of He's variational iteration method on the assumption of considering the impulse response of the linear parts, or equal… More >

  • Open Access

    ARTICLE

    Solving Elastic Problems with Local Boundary Integral Equations (LBIE) and Radial Basis Functions (RBF) Cells

    E. J. Sellountos1, A. Sequeira1, D. Polyzos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.2, pp. 109-136, 2010, DOI:10.3970/cmes.2010.057.109

    Abstract A new Local Boundary Integral Equation (LBIE) method is proposed for the solution of plane elastostatic problems. Non-uniformly distributed points taken from a Finite Element Method (FEM) mesh cover the analyzed domain and form background cells with more than four points each. The FEM mesh determines the position of the points without imposing any connectivity requirement. The key-point of the proposed methodology is that the support domain of each point is divided into parts according to the background cells. An efficient Radial Basis Functions (RBF) interpolation scheme is exploited for the representation of displacements in each cell. Tractions in the… More >

  • Open Access

    ARTICLE

    Error Analysis of Various Basis Functions Used in BEM Solution of Acoustic Scattering

    B. Chandrasekhar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 211-230, 2010, DOI:10.3970/cmes.2010.056.211

    Abstract In this work, various basis functions used in the Method of Moments or Boundary Element (MoM/BEM) solution of acoustic scattering problems are compared with each other for their performance. Single layer formulation of the rigid bodies is considered in comparison of the solutions. Geometry of a scatterer is descritized using triangular patch modeling and basis functions are defined on triangular patches, edges and nodes for three different solutions. Far field scattering cross sections for different frequencies of incident acoustic wave are compared with the closed form solutions. Also, the errors of the solutions using these three types of basis functions… More >

  • Open Access

    ARTICLE

    Fictitious Time Integration Method of Fundamental Solutions with Chebyshev Polynomials for Solving Poisson-type Nonlinear PDEs

    Chia-Cheng Tsai1, Chein-Shan Liu2, Wei-Chung Yeih3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.2, pp. 131-152, 2010, DOI:10.3970/cmes.2010.056.131

    Abstract The fictitious time integration method (FTIM) previously developed by Liu and Atluri (2008a) is combined with the method of fundamental solutions and the Chebyshev polynomials to solve Poisson-type nonlinear PDEs. The method of fundamental solutions with Chebyshev polynomials (MFS-CP) is an exponentially-convergent meshless numerical method which is able to solving nonhomogeneous partial differential equations if the fundamental solution and the analytical particular solutions of the considered operator are known. In this study, the MFS-CP is extended to solve Poisson-type nonlinear PDEs by using the FTIM. In the solution procedure, the FTIM is introduced to convert a Poisson-type nonlinear PDE into… More >

  • Open Access

    ARTICLE

    Dynamic Stress Intensity Factors of Mode I Crack Problem for Functionally Graded Layered Structures

    Sheng-Hu Ding1,2, Xing Li2, Yue-Ting Zhou2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.1, pp. 43-84, 2010, DOI:10.3970/cmes.2010.056.043

    Abstract In this paper, the crack-tip fields in bonded functionally graded finite strips are studied. Different layers may have different nonhomogeneity properties in the structure. A bi-parameter exponential function was introduced to simulate the continuous variation of material properties. The problem was reduced as a system of Cauchy singular integral equations of the first kind by Laplace and Fourier integral transforms. Various internal cracks and edge crack and crack crossing the interface configurations are investigated, respectively. The asymptotic stress field near the tip of a crack crossing the interface is examined and it is shown that, unlike the corresponding stress field… More >

  • Open Access

    ARTICLE

    Error Reduction in Gauss-Jacobi-Nyström Quadraturefor Fredholm Integral Equations of the Second Kind

    M. A. Kelmanson1 and M. C. Tenwick1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.2, pp. 191-210, 2010, DOI:10.3970/cmes.2010.055.191

    Abstract A method is presented for improving the accuracy of the widely used Gauss-Legendre Nyström method for determining approximate solutions of Fredholm integral equations of the second kind on finite intervals. The authors' recent continuous-kernel approach is generalised in order to accommodate kernels that are either singular or of limited continuous differentiability at a finite number of points within the interval of integration. This is achieved by developing a Gauss-Jacobi Nyström method that moreover includes a mean-value estimate of the truncation error of the Hermite interpolation on which the quadrature rule is based, making it particularly accurate at low orders. A… More >

  • Open Access

    ARTICLE

    An Investigation of Metal 3D Spheroidal Resonators Using a Body of Revolution Approach

    A. Vukovic1, P. Sewell1, T. M. Benson1

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.2, pp. 171-190, 2010, DOI:10.3970/cmes.2010.055.171

    Abstract A fast and accurate method is developed for the analysis of a class of metal three-dimensional resonators with rotational symmetry. The analysis is formulated using the Body of Revolution approach and the Method of Analytical Regularization. This development is motivated by the need for three-dimensional analytical solvers that could enable fast and accurate analysis of photonic resonant structures which support very high Q whispering gallery modes and which are computationally challenging for numerical simulations. The paper outlines the formulation of the method and demonstrates the stability and the source of computation errors of the method. As a practical illustration, the… More >

Displaying 1001-1010 on page 101 of 1149. Per Page