Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,634)
  • Open Access

    ARTICLE

    MicroCT/Micromechanics-Based Finite Element Models and Quasi-Static Unloading Tests Deliver Consistent Values for Young's Modulus of Rapid-Prototyped Polymer-Ceramic Tissue Engineering Scaffold

    K.W. Luczynski1, A. Dejaco1, O. Lahayne1, J. Jaroszewicz2, W.Swieszkowski2, C. Hellmich1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 505-529, 2012, DOI:10.3970/cmes.2012.087.505

    Abstract A 71 volume-% macroporous tissue engineering scaffold made of poly-l-lactide (PLLA) with 10 mass-% of pseudo-spherical tri-calcium phosphate (TCP) inclusions (exhibiting diameters in the range of several nanometers) was microCT-scanned. The corresponding stack of images was converted into regular Finite Element (FE) models consisting of around 100,000 to 1,000,000 finite elements. Therefore, the attenuation-related, voxel-specific grey values were converted into TCP-contents, and the latter, together with nanoindentation tests,entered a homogenization scheme of the Mori-Tanaka type, as to deliver voxel-specific (and hence, finite element-specific) elastic properties. These FE models were uniaxially loaded, giving access to the macroscopic Young's modulus of the… More >

  • Open Access

    ARTICLE

    Optimal Shape of Fibers in Transmission Problem

    P.P. Prochazka1, M.J. Valek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.3, pp. 207-224, 2012, DOI:10.3970/cmes.2012.087.207

    Abstract In classical theories of homogenization and localization of composites the effect of shape of inclusions is not taken into account. This is probably done because of very small fibers in classical composites based on epoxy matrix. Applying more precise theoretical and numerical tools appears that the classical theories desire corrections in this direction. Today many types of materials their fiber are much bigger and with various material properties are used and behave as typical composites. They enable producers to create the fiber cross-sections and model them in various shapes, so that it is meaningful to carry out the optimization. In… More >

  • Open Access

    ARTICLE

    A New Algorithm for the Thermo-Mechanical Coupled Frictional Contact Problem of Polycrystalline Aggregates Based on Plastic Slip Theory

    Yun Chen1, Junzhi Cui2, Yufeng Nie1, Yiqiang Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.3&4, pp. 189-206, 2011, DOI:10.3970/cmes.2011.076.189

    Abstract This paper presents a new numerical algorithm for thermal-mechanical coupled analysis of polycrystalline aggregates based on the plastic slip theory inside crystals and the frictional contact on their interfaces. It involves the mechanics and heat conduction behaviors caused by both force loads and temperature changing within crystal and contact interfaces between crystals. Firstly, the constitutive relationship inside single crystal, and the moment equations and energy equations are derived by means of rate-dependent plastic deformation theory and the formulation of elastic-plastic tangent modulus depended on temperature. Secondly, the contact conditions with friction, including frictional heat generation and heat transfer across the… More >

  • Open Access

    ARTICLE

    RKPM Approach to Elastic-Plastic Fracture Mechanics with Notes on Particles Distribution and Discontinuity Criteria

    Mohammad Mashayekhi1, Hossein M. Shodja1,2, Reza Namakian1

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.1, pp. 19-60, 2011, DOI:10.3970/cmes.2011.076.019

    Abstract A meshless method called reproducing kernel particle method (RKPM) is exploited to cope with elastic-plastic fracture mechanics (EPFM) problems. The idea of arithmetic progression is assumed to place particles within the refinement zone in the vicinity of the crack tip. A comparison between two conventional treatments, visibility and diffraction, to crack discontinuity is conducted. Also, a tracking to find the appropriate diffraction parameter is performed. To assess the suggestions made, two mode I numerical simulations, pure tension and pure bending tests, are executed. Results including J integral, crack mouth opening displacement (CMOD), and plastic zone size and shape are compared… More >

  • Open Access

    ARTICLE

    Galerkin/Collocation Methods Based on 1D-Integrated-RBFNs for Viscoelastic Flows

    D. Ho-Minh1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.70, No.3, pp. 217-252, 2010, DOI:10.3970/cmes.2010.070.217

    Abstract In this paper, one-dimensional integrated radial-basis-function networks (1D-IRBFNs) are introduced into the Galerkin and point-collocation formulations to simulate viscoelastic flows. The computational domain is represented by a Cartesian grid and IRBFNs, which are constructed through integration, are employed on each grid line to approximate the field variables including stresses in the streamfunction-vorticity formulation. Two types of fluid, namely Oldroyd-B and CEF models, are considered. The proposed methods are validated through the numerical simulation of several benchmark test problems including flows in a rectangular duct and in a corrugated tube. Numerical results show that accurate results are obtained using relatively-coarse grids. More >

  • Open Access

    ARTICLE

    Dynamic Modeling and Analysis of Arch Bridges Using Beam-Arch Segment Assembly

    Wei-Xin Ren1,2,3, Cong-Cong Su1, Wang-Ji Yan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.70, No.1, pp. 67-92, 2010, DOI:10.3970/cmes.2010.070.067

    Abstract A beam-arch segment assembly procedure is presented in this paper for the dynamic modelling and analysis of arch bridges. Such a beam-arch segment assembly is composed of different structural elements of arch bridges such as arch ribs (curved beams), suspenders, girders and floor beams. Based on the energy principle in structural dynamics, the stiffness matrix and mass matrix of such an assembly are formulated. The proposed procedure is then implemented to carry out the free vibration analysis of the Jian concrete filled tubular arch bridge. It is demonstrated that the proposed beam-arch segment assembly procedure is efficient with the advantages… More >

  • Open Access

    ARTICLE

    Analysis and Prediction of Edge Effect on Inherent Deformation of Thick Plates Formed by Line Heating

    Adan Vega, Naoki Osawa, Sherif Rashed, Hidekazu Murakawa

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.3, pp. 261-280, 2010, DOI:10.3970/cmes.2010.069.261

    Abstract A three dimensional thermal-elasto-plastic FEA has been performed to predict the heat induced (inherent) deformation produced in thick steel plates formed by line heating. Using this FEA, the edge effect on inherent deformation is clarified. From the results of this study, a method to predict the edge effect is developed. Using this method, the edge effect on inherent deformation, for a wide range of plate thickness and heating condition, can be easily predicted, been this, an important step toward the automation of the process. More >

  • Open Access

    ARTICLE

    A Cartesian-Grid Discretisation Scheme Based on Local Integrated RBFNs for Two-Dimensional Elliptic Problems

    N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.3, pp. 213-238, 2009, DOI:10.3970/cmes.2009.051.213

    Abstract This paper reports a new numerical scheme based on Cartesian grids and local integrated radial-basis-function networks (IRBFNs) for the solution of second-order elliptic differential problems defined on two-dimensional regular and irregular domains. At each grid point, only neighbouring nodes are activated to construct the IRBFN approximations. Local IRBFNs are introduced into two different schemes for discretisation of partial differential equations, namely point collocation and control-volume (CV)/subregion-collocation. Linear (e.g. heat flow) and nonlinear (e.g. lid-driven triangular-cavity fluid flow) problems are considered. Numerical results indicate that the local IRBFN CV scheme outperforms the local IRBFN point-collocation scheme regarding accuracy. Moreover, the former… More >

  • Open Access

    ARTICLE

    A Mesh-Free DRK-Based Collocation Method for the Coupled Analysis of Functionally Graded Magneto-Electro-Elastic Shells and Plates

    Chih-Ping Wu1,2, Kuan-Hao Chiu2, Yung-Ming Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.3, pp. 181-214, 2008, DOI:10.3970/cmes.2008.035.181

    Abstract A mesh-free collocation method based on differential reproducing kernel (DRK) approximations is developed for the three-dimensional (3D) analysis of simply-supported, doubly curved functionally graded (FG) magneto-electro-elastic shells under the mechanical load, electric displacement and magnetic flux. The material properties of FG shells are firstly regarded as heterogeneous through the thickness coordinate and then specified to obey an identical power-law distribution of the volume fractions of the constituents. The novelty of the present DRK-based collocation method is that the shape functions of derivatives of reproducing kernel (RK) approximants are determined using a set of differential reproducing conditions without directly taking the… More >

  • Open Access

    ARTICLE

    Solutions for Incompressible Viscous Flow in a Triangular Cavity using Cartesian Grid Method

    B. M. Pasquim1, V. C. Mariani2

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.2, pp. 113-132, 2008, DOI:10.3970/cmes.2008.035.113

    Abstract This study presents a Cartesian grid method and its application to solve a steady flow in a lid-driven triangular two-dimensional cavity. The evolution of stream function and vorticity inside a triangular lid-driven cavity, when the Reynolds number changes from 1 to 6000, is presented. For space discretization on the interior of triangular cavity orthogonal Cartesian grid is used. Then, using this grid, trapezoidal volumes appear in the interface between solid and fluid. For a suitable treatment of these volumes the Eulerian-Lagrangian methodology is used. The Navier-Stokes equations are solved numerically using finite-volume method. On the basis of the numerical studies… More >

Displaying 1441-1450 on page 145 of 1634. Per Page