Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,501)
  • Open Access

    ARTICLE

    Tesla-Valve-Based Wind Barriers for Energy Dissipation and Aerodynamic Load Reduction on Trains

    Bo Su1, Mwansa Chambalile1, Shihao He1, Wan Sun2, Enyuan Zhang1, Tong Guo3, Jianming Hao4, Md. Mahbub Alam5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.076681 - 06 February 2026

    Abstract Predicting the precise impacts of climate change on extreme winds remains challenging, yet strong storms are widely expected to occur more frequently in a warming climate. Wind barriers are commonly used on bridges to reduce aerodynamic loads on trains through blocking effects. This study develops a novel wind barrier based on Tesla valves, which not only blocks incoming flow but also dissipates mechanical energy through fluid collision. To demonstrate this energy-dissipation capability, a Tesla plate is placed in a circular duct to examine its influence on pressure drop. Experimental tests and numerical simulations comparing a… More >

  • Open Access

    ARTICLE

    Selection of Conservation Practices in Different Vineyards Impacts Soil, Vines and Grapes Quality Attributes

    Antonios Chrysargyris1,*, Demetris Antoniou2, Timos Boyias2, Nikolaos Tzortzakis1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.076565 - 30 January 2026

    Abstract Cyprus has an extensive record in grape production and winemaking. Grapevine is essential for the economic and environmental sustainability of the agricultural sector, as it is in other Mediterranean regions. Intensive agriculture can overuse and exhaust natural resources, including soil and water. The current study evaluated how conservation strategies, including no tillage and semi-tillage (as a variation of strip tillage), affected grapevine growth and grape quality when compared to conventional tillage application. Two cultivars were used: Chardonnay and Maratheftiko (indigenous). Soil pH decreased, and EC increased after tillage applications, in both vineyards. Tillage lowered soil… More >

  • Open Access

    ARTICLE

    Partial Suppression of the Proline Dehydrogenase Gene Mitigates the Impact of Drought on the Photosynthetic Apparatus and Productivity in Winter Wheat

    Dmytro A. Kiriziy1, Oksana V. Dubrovna1, Oksana G. Sokolovska-Sergiienko1, Alina S. Holoboroda1, Victor V. Rohach1,2, Oleg O. Stasik1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.075371 - 30 January 2026

    Abstract Water scarcity severely constrains the genetic potential of wheat yield worldwide. Proline is among the most versatile stress-related metabolites in plants, and targeting genes involved in proline synthesis and degradation represents a promising strategy for developing drought-tolerant wheat genotypes. This study evaluates the performance of the photosynthetic apparatus in transgenic wheat line with RNAi-mediated suppression of proline dehydrogenase (ProDH) and in the original (wild-type) genotype, under both drought and recovery conditions. Drought was induced at the flowering stage by lowering soil moisture to 30% field capacity for 7 days, compared with 70% field capacity in… More >

  • Open Access

    ARTICLE

    Tissue-Specific Transcriptomic Responses and Viral Accumulation in Lily Cultivars Infected with Cucumber Mosaic Virus

    Yun-Im Kang1, Youn Jung Choi1, Su Young Lee1, Young-Ran Lee1, Ki-Byung Lim2,3, Yun-Jae Ahn2,3,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.073138 - 30 January 2026

    Abstract Cucumber mosaic virus (CMV) threatens lily production by reducing floral quality and enabling carry-over via infected planting stock. To explore tissue-specific host responses, we analyzed a legacy, single-replicate RNA-seq dataset from two cultivars, ‘Cancun’ and ‘Connecticut King’ (CK), profiling leaf (source) and bulb (sink) tissues at 0 and 28 days post-inoculation (dpi), alongside leaf DAS-ELISA. Principal component analysis indicated that tissue identity dominated the transcriptome (PC1 = 47.7%), with CMV treatment driving within-tissue shifts over time. Exploratory Gene Ontology/KEGG summaries and a focused marker panel revealed a consistent split: in leaves, genes linked to jasmonate/WRKY-associated… More >

  • Open Access

    ARTICLE

    The Connection Paradox: How Social Support Facilitates Short Video Addiction and Solitary Well-Being among Older Adults in China

    Yue Cui1, Ziqing Yang2, Hao Gao1,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.072986 - 28 January 2026

    Abstract Background: In the Chinese context, the impact of short video applications on the psychological well-being of older adults is contested. While often examined through a pathological lens of addiction, this perspective may overlook paradoxical, context-dependent positive outcomes. Therefore, the main objective of this study is to challenge the traditional Compensatory Internet Use Theory by proposing and testing a chained mediation model that explores a paradoxical pathway from social support to life satisfaction via problematic social media use. Methods: Data were collected between July and August 2025 via the Credamo online survey platform, yielding 384 valid responses… More >

  • Open Access

    ARTICLE

    Novel Analysis of SiO2 + ZnO + MWCNT-Ternary Hybrid Nanofluid Flow in Electromagnetic Squeezing Systems

    Muhammad Hamzah1, Muhammad Ramzan2,*, Abdulrahman A. Almehizia3, Ibrahim Mahariq4,5,6,7,8,*, Laila A. Al-Essa9, Ahmed S. Hassan10

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.070435 - 29 January 2026

    Abstract The present investigation inspects the unsteady, incompressible MHD-induced flow of a ternary hybrid nanofluid made of SiO2 (silicon dioxide), ZnO (zinc oxide), and MWCNT (multi-walled carbon nanotubes) suspended in a water-ethylene glycol base fluid between two perforated squeezing Riga plates. This problem is important because it helps us understand the complicated connections between magnetic fields, nanofluid dynamics, and heat transport, all of which are critical for designing thermal management systems. These findings are especially useful for improving the design of innovative cooling technologies in electronics, energy systems, and healthcare applications. No prior study has… More >

  • Open Access

    ARTICLE

    Mechanically Stable, Thermodynamic, Photo-Catalytic and Ferromagnetic Characteristic of Ferrites Al2Mn(S/Se)4 for Energy Storage Applications: DFT-Calculations

    Hosam O. Elansary1, Naveed A. Noor2, Syed M. Ahmad3, Humza Riaz3, Sohail Mumtaz4,*

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.076592 - 26 January 2026

    Abstract Ferrites are remarkable compounds for energy harvesting and spintronic applications. For this purpose, mechanically stable, thermodynamic, photo-catalytic, and ferromagnetic characteristics of ferrites Al2Mn(S/Se)4 have been investigated significantly using PBEsol-GGA and modified Becke Johnson potential (TB-mBJ). In order to determine structural stability, we calculate formation energy (Ef) and Born stability criteria that confirm the structural stability of the Al2Mn(S/Se)4. 2D and 3D plots of Poisson’s ratio (υ) and linear compressibility are also used to indicate the stability of these materials. Additionally, thermodynamic characteristics reveal that both ferrites are stable. Spin-polarized electronic properties indicate that both ferrites are ferromagnetic More >

  • Open Access

    ARTICLE

    Synthesis and Photoresponse of Quinary Zinc-Blende Cu3FeInSnS6 Nanoplates

    Dehui Li1,#, Yiming Guo1,#, Tao He1, Binbin Zhang1, Haixia Yu2,*, Lingkun Meng1,*

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.075922 - 26 January 2026

    Abstract Quinary Cu3FeInSnS6 (CFITS) nanoplates were synthesized through a synergistic dual-cation substitution strategy using a hot-injection method, where oleylamine and 1-dodecanethiol served as coordinating ligands to guide two-dimensional growth. The nanocrystals were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and absorption spectroscopy. Structural analysis confirms that the CFITS nanoplates crystallize in a phase-pure cubic zinc-blende structure (space group F-43 m) without detectable secondary phases. Optical measurements reveal that the nanoplates exhibit broad and intense visible-light absorption with a direct bandgap of 1.51 ± 0.03 eV, suitable for photovoltaic applications. Under standard AM 1.5 G… More >

  • Open Access

    ARTICLE

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

    Francisco Daniel García1,2, Solange Nicole Aigner1,2, Natalia Raffaeli3, Antonio José Barotto3, Eleana Spavento3, Mariano Martín Escobar1,4, Marcela Angela Mansilla1,4, Alejandro Bacigalupe1,4,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0181 - 23 January 2026

    Abstract This study explores the use of black soldier fly larvae protein as a bio-based adhesive to produce particleboards from sugarcane bagasse. A comprehensive evaluation was conducted, including rheological characterization of the adhesive and physical–mechanical testing of the panels according to European standards. The black soldier fly larvae-based adhesive exhibited gel-like viscoelastic behavior, rapid partial structural recovery after shear, and favorable application properties. Particleboards manufactured with this adhesive and sugarcane bagasse achieved promising mechanical performance, with modulus of rupture and modulus of elasticity values of 30.2 and 3500 MPa, respectively. Internal bond strength exceeded 0.4 MPa,… More > Graphic Abstract

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

  • Open Access

    ARTICLE

    Evaluation of Strip-Processed Cotton Stalks as a Raw Material for Structural Panels

    Aadarsha Lamichhane1, Arun Kuttoor Vasudevan1, Ethan Dean1, Mostafa Mohammadabadi1,*, Kevin Ragon1, Ardeshir Adeli2

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0146 - 23 January 2026

    Abstract This study explores a novel method for processing cotton stalks—an abundant agricultural byproduct—into long strips that serve as sustainable raw material for engineered bio-based panels. To evaluate the effect of raw material morphology on panel’s performance, two types of cotton stalk-based panels were developed: one using long strips, maintaining fiber continuity, and the other using ground particles, representing conventional processing. A wood strand-based panel made from commercial southern yellow pine strands served as the control. All panels were bonded using phenol-formaldehyde resin and hot-pressed to a target thickness of 12.7 mm and density of 640 kg/m3.… More >

Displaying 1-10 on page 1 of 2501. Per Page