Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (322)
  • Open Access

    ARTICLE

    Physico-Chemical and Morphological Characterization of Cellulosic Samples Obtained from Sisal Fibers

    G. Mondragon, C. Peña-Rodriguez, A. Eceiza, A. Arbelaiz*

    Journal of Renewable Materials, Vol.5, No.5, pp. 345-356, 2017, DOI:10.7569/JRM.2017.634124

    Abstract In this work, the main chemical reactions conditions of a succession of specific chemical treatments used for the isolation of nanocellulose from sisal fibers were evaluated. The novelty of this work is the study done to analyze the effect of different reaction conditions (time or concentration) in fiber structure and composition as well as in the characteristics of obtained cellulosic samples. In order to achieve this goal different physicochemical, thermal and morphological characterization techniques were used after each chemical treatment and the most suitable reaction conditions were selected for the subsequent treatment. Moreover, the thermal stability evolution of cellulose nanocrystals… More >

  • Open Access

    ARTICLE

    Biodegradation Pretreatment of Wood of E. grandis, E. dunnii, and E. benthamii to Work in Biorefi nery Processes

    Mary Isabel Lopretti1,2*, Natalia Irene Baldyga3, Maria Gonzalez1, Laura Beatriz Olazabal3, Marina Graciela Torres3, Fernando Resquin4, Leonidas Carrasco4

    Journal of Renewable Materials, Vol.4, No.1, pp. 66-71, 2016, DOI:10.7569/JRM.2015.634133

    Abstract Nowadays, there is a great interest in using lignocellulosic materials as substrate for the production of biorefi nery products. Eucalypti are good options to use as crops to obtain different kinds of biofuels and derivatives, since their plantations show high adaptation potential to soil and weather conditions in Uruguay. The basic process steps involved in the obtainment of biorefi nery materials are: pretreatment, hydrolysis, fermentation and products separation. As delignifi cation is an important process to obtain biorefi nery products, in this context the evaluation of the biological (BT) and hydrothermal (TT) pretreatment of different species of Eucaliptus was studied.… More >

  • Open Access

    ARTICLE

    Superhydrophobic and Oleophobic UV-Curable Surface Engineering of Cellulose-Based Substrates

    José M. R. C. A. Santos*, Ana R. Sampaio, Joana Branquinho

    Journal of Renewable Materials, Vol.4, No.1, pp. 31-40, 2016, DOI:10.7569/JRM.2015.634123

    Abstract Cellulose-based materials are one of the most widely used materials provided by nature to mankind. In particular, cotton fi bers have been used for millennia to produce clothing items. This wide usage stems from the inherent properties of cotton fabrics such as hydrophilicity and permeability to water vapor. However, increasingly sophisticated uses for cotton-based clothing (e.g., technical textiles) demand specifi c properties such as hydrophobicity and oleophobicity for repellent functions. The current surface treatments used to attain these functionalities are based on thermally initiated polymerization reactions, using water-based formulations. Thus, the current technologies are energy- and water-intensive. The advantages of… More >

  • Open Access

    ARTICLE

    Intramyocardial Injections to De-Stiffen the Heart: A Subject-Specific in Silico Approach

    Yaghoub Dabiri1,3, Kevin L. Sack1,2, Semion Shaul1, Gabriel Acevedo-Bolton1, Jenny S. Choy3, Ghassan S. Kassab3, Julius M. Guccione1,*

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 185-197, 2019, DOI:10.32604/mcb.2019.07364

    Abstract We hypothesized that minimally invasive injections of a softening agent at strategic locations in stiff myocardium could de-stiffen the left ventricle (LV) globally. Physics-based finite element models of the LV were created from LV echocardiography images and pressures recorded during experiments in four swine. Results confirmed animal models of LV softening by systemic agents. Regional de-stiffening of myocardium led to global de-stiffening of LV. The mathematical set up was used to design LV global de-stiffening by regional softening of myocardium. At an end diastolic pressure of 23 mmHg, when 8 ml of the free wall was covered by intramyocardial injections,… More >

  • Open Access

    ARTICLE

    Enhanced External Counterpulsation Treatment May Intervene The Advanced Atherosclerotic Plaque Progression by Inducing The Variations of Mechanical Factors: A 3D FSI Study Based on in vivo Animal Experiment

    Jianhang Du1,2,3, Liang Wang4

    Molecular & Cellular Biomechanics, Vol.12, No.4, pp. 249-263, 2015, DOI:10.3970/mcb.2015.012.249

    Abstract Growing evidences suggest that long-term enhanced external counterpulsation (EECP) treatment can inhibit the initiation of atherosclerotic lesion by improving the hemodynamic environment in aortas. However, whether this kind procedure will intervene the progression of advanced atherosclerotic plaque remains elusive and causes great concern in its clinical application presently. In the current paper, a pilot study combining animal experiment and numerical simulation was conducted to investigate the acute mechanical stress variations during EECP intervention, and then to assess the possible chronic effects. An experimentally induced hypercholesterolemic porcine model was developed and the basic hemodynamic measurement was performed in vivo before and… More >

  • Open Access

    ARTICLE

    3D Numerical Study of Tumor Microenvironmental Flow in Response to Vascular-Disrupting Treatments

    Jie Wu∗,†, Yan Cai, Shixiong Xu§, Quan Long, Zurong Ding*, Cheng Dong∗,||

    Molecular & Cellular Biomechanics, Vol.9, No.2, pp. 95-126, 2012, DOI:10.3970/mcb.2012.009.095

    Abstract The effects of vascular-disrupting treatments on normalization of tumor microvasculature and its microenvironmental flow were investigated, by mathematical modeling and numerical simulation of tumor vascular-disrupting and tumor haemodynamics. Four disrupting approaches were designed according to the abnormal characteristics of tumor microvasculature compared with the normal one. The results predict that the vascular-disrupting therapies could improve tumor microenvironment, eliminate drug barrier and inhibit metastasis of tumor cells to some extent. Disrupting certain types of vessels may get better effects. In this study, the flow condition on the networks with "vascular-disrupting according to flowrate" is the best comparing with the other three… More >

  • Open Access

    ARTICLE

    Knowledge Composition and Its Influence on New Product Development Performance in the Big Data Environment

    Chuanrong Wu1,*, Veronika Lee1, Mark E. McMurtrey2

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 365-378, 2019, DOI:10.32604/cmc.2019.06949

    Abstract Product innovation is regarded as a primary means for enterprises to maintain their competitive advantage. Knowledge transfer is a major way that enterprises access knowledge from the external environment for new product innovation. Knowledge transfer may face the risk of infringement of the intellectual property rights of other enterprises and the termination of licensing agreements by the knowledge source. Enterprises must develop independent innovation knowledge at the same time they profit from knowledge transfers. Therefore, new product development by an enterprise usually consists of three types of new knowledge: big data knowledge transferred from big data knowledge providers, private knowledge… More >

  • Open Access

    ARTICLE

    Mechanical Response and Energy Dissipation Analysis of Heat-Treated Granite Under Repeated Impact Loading

    Zhiliang Wang1,*, Nuocheng Tian2, Jianguo Wang3, Shengqi Yang3, Guang Liu1

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 275-296, 2019, DOI:10.32604/cmc.2019.04247

    Abstract The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading. The granite samples were firstly heat-treated at the temperature of 20°C, 200°C, 400°C, and 600°C, respectively. The thermal damage characteristics of these samples were then observed and measured before impact tests. Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s, 15 m/s, and 18 m/s. These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures. The number of microcracks and… More >

  • Open Access

    ARTICLE

    Numerical Treatment for Stochastic Computer Virus Model

    Ali Raza1, Muhammad Shoaib Arif1,*, Muhammad Rafiq2, Mairaj Bibi3, Muhammad Naveed1, Muhammad Usman Iqbal4, Zubair Butt4, Hafiza Anum Naseem4, Javeria Nawaz Abbasi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 445-465, 2019, DOI:10.32604/cmes.2019.06454

    Abstract This writing is an attempt to explain a reliable numerical treatment for stochastic computer virus model. We are comparing the solutions of stochastic and deterministic computer virus models. This paper reveals that a stochastic computer virus paradigm is pragmatic in contrast to the deterministic computer virus model. Outcomes of threshold number C hold in stochastic computer virus model. If C < 1 then in such a condition virus controlled in the computer population while C > 1 shows virus persists in the computer population. Unfortunately, stochastic numerical methods fail to cope with large step sizes of time. The suggested structure… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Derusting Treatment of Steel Parts By Shot Blast

    Zhe Li1, Fan Yang1,*, Yaping Liu1, Yukui Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 157-175, 2019, DOI:10.32604/cmes.2019.05187

    Abstract In this paper, we investigated the shot blast treatment for derusting application through finite element (FE) simulations with a large number of random shots. The element deletion technique based on dynamic failure criteria was used to model the removal of rust. The cohesive surface model with damage evolution was used to characterize the decohesion of the rust/substrate interface. The effects of various processing and material parameters on the derusting effectiveness were examined. The results show that the rate of derusting mainly depends on the shot size, velocity and impinging angle, with little relevance to the rust thickness. The spalling of… More >

Displaying 301-310 on page 31 of 322. Per Page