Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access

    ARTICLE

    HDFPM: A Heterogeneous Disk Failure Prediction Method Based on Time Series Features

    Zhongrui Jing1, Hongzhang Yang1,*, Jiangpu Guo2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.067759 - 09 December 2025

    Abstract Hard disk drives (HDDs) serve as the primary storage devices in modern data centers. Once a failure occurs, it often leads to severe data loss, significantly degrading the reliability of storage systems. Numerous studies have proposed machine learning-based HDD failure prediction models. However, the Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes differ across HDD manufacturers. We define hard drives of the same brand and model as homogeneous HDD groups, and those from different brands or models as heterogeneous HDD groups. In practical engineering scenarios, a data center is often composed of a heterogeneous population of… More >

  • Open Access

    ARTICLE

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

    Jeongsu Park1, Moohong Min2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3913-3948, 2025, DOI:10.32604/cmes.2025.072261 - 23 December 2025

    Abstract Time series anomaly detection is critical in domains such as manufacturing, finance, and cybersecurity. Recent generative AI models, particularly Transformer- and Autoencoder-based architectures, show strong accuracy but their robustness under noisy conditions is less understood. This study evaluates three representative models—AnomalyTransformer, TranAD, and USAD—on the Server Machine Dataset (SMD) and cross-domain benchmarks including the Soil Moisture Active Passive (SMAP) dataset, the Mars Science Laboratory (MSL) dataset, and the Secure Water Treatment (SWaT) testbed. Seven noise settings (five canonical, two mixed) at multiple intensities are tested under fixed clean-data training, with variations in window, stride, and More > Graphic Abstract

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

  • Open Access

    ARTICLE

    Survival Status and Trend Prediction of the Endangered Plant Cupressus gigantea Populations in Tibet Plateau

    Manzhu Liao1, Lan Yang1, Liehua Tie1, Qiqiang Guo1,*, Weilie Zheng2,*, Jiangrong Li2, Yongxia Li2

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3633-3652, 2025, DOI:10.32604/phyton.2025.072725 - 01 December 2025

    Abstract Cupressus gigantea is an endemic endangered tree species in the Tibet Plateau, and studying the survival status of the different C. gigantea populations and revealing the main environmental factors that affect the population survival are particularly significant for the conservation and sustainable development of endangered species. Based on the 28 sample plots, the Hierarchical Cluster Method was used to classify the C. gigantea populations into four community types. Age structure diagrams were drawn based on the structure of each community, static life tables and survival curves were compiled, and the future development trends of each age group in… More >

  • Open Access

    ARTICLE

    Efficient Time-Series Feature Extraction and Ensemble Learning for Appliance Categorization Using Smart Meter Data

    Ugur Madran, Saeed Mian Qaisar*, Duygu Soyoglu

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1969-1992, 2025, DOI:10.32604/cmes.2025.072024 - 26 November 2025

    Abstract Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids. It offers substantial benefits across social, environmental, and economic dimensions. To effectively realize these advantages, a fine-grained collection and analysis of smart meter data is essential. However, the high dimensionality and volume of such time-series present significant challenges, including increased computational load, data transmission overhead, latency, and complexity in real-time analysis. This study proposes a novel, computationally efficient framework for feature extraction and selection tailored to smart meter time-series data. The approach begins with an extensive offline analysis, where features are… More >

  • Open Access

    ARTICLE

    Short-Term Multi-Hazard Prediction Using a Multi-Source Data Fusion Approach

    Syeda Zoupash Zahra1, Najia Saher2, Malik Muhammad Saad Missen3, Rab Nawaz Bashir4,5, Salma Idris5, Tahani Jaser Alahmadi6,*, Muhammad Inshal Khan5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4869-4883, 2025, DOI:10.32604/cmc.2025.067639 - 23 October 2025

    Abstract The increasing frequency and intensity of natural disasters necessitate advanced prediction techniques to mitigate potential damage. This study presents a comprehensive multi-hazard early warning framework by integrating the multi-source data fusion technique. A multi-source data extraction method was introduced by extracting pressure level and average precipitation data based on the hazard event from the Cooperative Open Online Landslide Repository (COOLR) dataset across multiple temporal intervals (12 h to 1 h prior to events). Feature engineering was performed using Choquet fuzzy integral-based importance scoring, which enables the model to account for interactions and uncertainty across multiple… More >

  • Open Access

    ARTICLE

    Deployable and Accurate Time Series Prediction Model for Earth-Retaining Wall Deformation Monitoring

    Seunghwan Seo1,2,*, Moonkyung Chung1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2893-2922, 2025, DOI:10.32604/cmes.2025.069668 - 30 September 2025

    Abstract Excavation-induced deformations of earth-retaining walls (ERWs) can critically affect the safety of surrounding structures, highlighting the need for reliable prediction models to support timely decision-making during construction. This study utilizes traditional statistical ARIMA (Auto-Regressive Integrated Moving Average) and deep learning-based LSTM (Long Short-Term Memory) models to predict earth-retaining walls deformation using inclinometer data from excavation sites and compares the predictive performance of both models. The ARIMA model demonstrates strengths in analyzing linear patterns in time-series data as it progresses over time, whereas LSTM exhibits superior capabilities in capturing complex non-linear patterns and long-term dependencies within… More > Graphic Abstract

    Deployable and Accurate Time Series Prediction Model for Earth-Retaining Wall Deformation Monitoring

  • Open Access

    ARTICLE

    AI for Cleaner Air: Predictive Modeling of PM2.5 Using Deep Learning and Traditional Time-Series Approaches

    Muhammad Salman Qamar1,2,*, Muhammad Fahad Munir2, Athar Waseem2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3557-3584, 2025, DOI:10.32604/cmes.2025.067447 - 30 September 2025

    Abstract Air pollution, specifically fine particulate matter (PM2.5), represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems. Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks; however, the inherent nonlinearity and dynamic variability of air quality data present significant challenges. This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and the hybrid CNN-LSTM as well as statistical models, AutoRegressive Integrated Moving Average (ARIMA) and Maximum Likelihood Estimation (MLE) for hourly PM2.5 forecasting. Model performance is… More >

  • Open Access

    REVIEW

    A Survey of Deep Learning for Time Series Forecasting: Theories, Datasets, and State-of-the-Art Techniques

    Gaoyong Lu1, Yang Ou1, Zhihong Wang2, Yingnan Qu2, Yingsheng Xia2, Dibin Tang2, Igor Kotenko3, Wei Li2,4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2403-2441, 2025, DOI:10.32604/cmc.2025.068024 - 23 September 2025

    Abstract Deep learning (DL) has revolutionized time series forecasting (TSF), surpassing traditional statistical methods (e.g., ARIMA) and machine learning techniques in modeling complex nonlinear dynamics and long-term dependencies prevalent in real-world temporal data. This comprehensive survey reviews state-of-the-art DL architectures for TSF, focusing on four core paradigms: (1) Convolutional Neural Networks (CNNs), adept at extracting localized temporal features; (2) Recurrent Neural Networks (RNNs) and their advanced variants (LSTM, GRU), designed for sequential dependency modeling; (3) Graph Neural Networks (GNNs), specialized for forecasting structured relational data with spatial-temporal dependencies; and (4) Transformer-based models, leveraging self-attention mechanisms to… More >

  • Open Access

    ARTICLE

    Using Time Series Foundation Models for Few-Shot Remaining Useful Life Prediction of Aircraft Engines

    Ricardo Dintén*, Marta Zorrilla

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 239-265, 2025, DOI:10.32604/cmes.2025.065461 - 31 July 2025

    Abstract Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events, posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing, which frequently leads to the development of large and complex models. Inspired by the success of Large Language Models (LLMs), transformer-based foundation models have been developed for time series (TSFM). These models have been proven to reconstruct time series in a zero-shot manner, being able to capture different patterns that effectively characterize time series. This paper proposes the use of TSFM to generate… More >

  • Open Access

    ARTICLE

    SDVformer: A Resource Prediction Method for Cloud Computing Systems

    Shui Liu1,2, Ke Xiong1,2,*, Yeshen Li1,2, Zhifei Zhang1,2,*, Yu Zhang3, Pingyi Fan4

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5077-5093, 2025, DOI:10.32604/cmc.2025.064880 - 30 July 2025

    Abstract Accurate prediction of cloud resource utilization is critical. It helps improve service quality while avoiding resource waste and shortages. However, the time series of resource usage in cloud computing systems often exhibit multidimensionality, nonlinearity, and high volatility, making the high-precision prediction of resource utilization a complex and challenging task. At present, cloud computing resource prediction methods include traditional statistical models, hybrid approaches combining machine learning and classical models, and deep learning techniques. Traditional statistical methods struggle with nonlinear predictions, hybrid methods face challenges in feature extraction and long-term dependencies, and deep learning methods incur high… More >

Displaying 1-10 on page 1 of 111. Per Page