Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Sentiment Drift Detection and Analysis in Real Time Twitter Data Streams

    E. Susi*, A. P. Shanthi

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 3231-3246, 2023, DOI:10.32604/csse.2023.032104

    Abstract Handling sentiment drifts in real time twitter data streams are a challenging task while performing sentiment classifications, because of the changes that occur in the sentiments of twitter users, with respect to time. The growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real time. This work proposes an adaptive learning algorithm-based framework, Twitter Sentiment Drift Analysis-Bidirectional Encoder Representations from Transformers (TSDA-BERT), which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the classification model with domain relevant… More >

  • Open Access

    ARTICLE

    Multi-label Emotion Classification of COVID–19 Tweets with Deep Learning and Topic Modelling

    K. Anuratha1,*, M. Parvathy2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 3005-3021, 2023, DOI:10.32604/csse.2023.031553

    Abstract The COVID-19 pandemic has become one of the severe diseases in recent years. As it majorly affects the common livelihood of people across the universe, it is essential for administrators and healthcare professionals to be aware of the views of the community so as to monitor the severity of the spread of the outbreak. The public opinions are been shared enormously in microblogging media like twitter and is considered as one of the popular sources to collect public opinions in any topic like politics, sports, entertainment etc., This work presents a combination of Intensity Based Emotion Classification Convolution Neural Network… More >

  • Open Access

    ARTICLE

    The Early Emotional Responses and Central Issues of People in the Epicenter of the COVID-19 Pandemic: An Analysis from Twitter Text Mining

    Eun-Joo Choi1, Yun-Jung Choi2,*

    International Journal of Mental Health Promotion, Vol.25, No.1, pp. 21-29, 2023, DOI:10.32604/ijmhp.2022.022641

    Abstract This study aimed to explore citizens’ emotional responses and issues of interest in the context of the coronavirus disease 2019 (COVID-19) pandemic. The dataset comprised 65,313 tweets with the location marked as New York State. The data collection period was four days of tweets when New York City imposed a lockdown order due to an increase in confirmed cases. Data analysis was performed using R Studio. The emotional responses in tweets were analyzed using the Bing and NRC (National Research Council Canada) dictionaries. The tweets’ central issue was identified by Text Network Analysis. When tweets were classified as either positive… More > Graphic Abstract

    The Early Emotional Responses and Central Issues of People in the Epicenter of the COVID-19 Pandemic: An Analysis from Twitter Text Mining

  • Open Access

    ARTICLE

    Sentiment Analysis with Tweets Behaviour in Twitter Streaming API

    Kuldeep Chouhan1, Mukesh Yadav2, Ranjeet Kumar Rout3, Kshira Sagar Sahoo4, NZ Jhanjhi5,*, Mehedi Masud6, Sultan Aljahdali6

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1113-1128, 2023, DOI:10.32604/csse.2023.030842

    Abstract Twitter is a radiant platform with a quick and effective technique to analyze users’ perceptions of activities on social media. Many researchers and industry experts show their attention to Twitter sentiment analysis to recognize the stakeholder group. The sentiment analysis needs an advanced level of approaches including adoption to encompass data sentiment analysis and various machine learning tools. An assessment of sentiment analysis in multiple fields that affect their elevations among the people in real-time by using Naive Bayes and Support Vector Machine (SVM). This paper focused on analysing the distinguished sentiment techniques in tweets behaviour datasets for various spheres… More >

  • Open Access

    ARTICLE

    A Machine Learning-Based Technique with Intelligent WordNet Lemmatize for Twitter Sentiment Analysis

    S. Saranya*, G. Usha

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 339-352, 2023, DOI:10.32604/iasc.2023.031987

    Abstract Laterally with the birth of the Internet, the fast growth of mobile strategies has democratised content production owing to the widespread usage of social media, resulting in a detonation of short informal writings. Twitter is microblogging short text and social networking services, with posted millions of quick messages. Twitter analysis addresses the topic of interpreting users’ tweets in terms of ideas, interests, and views in a range of settings and fields. This type of study can be useful for a variation of academics and applications that need knowing people’s perspectives on a given topic or event. Although sentiment examination of… More >

  • Open Access

    ARTICLE

    Sigmoidal Particle Swarm Optimization for Twitter Sentiment Analysis

    Sandeep Kumar1, Muhammad Badruddin Khan2, Mozaherul Hoque Abul Hasanat2, Abdul Khader Jilani Saudagar2,*, Abdullah AlTameem2, Mohammed AlKhathami2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 897-914, 2023, DOI:10.32604/cmc.2023.031867

    Abstract Social media, like Twitter, is a data repository, and people exchange views on global issues like the COVID-19 pandemic. Social media has been shown to influence the low acceptance of vaccines. This work aims to identify public sentiments concerning the COVID-19 vaccines and better understand the individual’s sensitivities and feelings that lead to achievement. This work proposes a method to analyze the opinion of an individual’s tweet about the COVID-19 vaccines. This paper introduces a sigmoidal particle swarm optimization (SPSO) algorithm. First, the performance of SPSO is measured on a set of 12 benchmark problems, and later it is deployed… More >

  • Open Access

    ARTICLE

    Twitter Media Sentiment Analysis to Convert Non-Informative to Informative Using QER

    C. P. Thamil Selvi1,*, P. Muneeshwari2, K. Selvasheela3, D. Prasanna4

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3545-3555, 2023, DOI:10.32604/iasc.2023.031097

    Abstract The term sentiment analysis deals with sentiment classification based on the review made by the user in a social network. The sentiment classification accuracy is evaluated using various selection methods, especially those that deal with algorithm selection. In this work, every sentiment received through user expressions is ranked in order to categorise sentiments as informative and non-informative. In order to do so, the work focus on Query Expansion Ranking (QER) algorithm that takes user text as input and process for sentiment analysis and finally produces the results as informative or non-informative. The challenge is to convert non-informative into informative using… More >

  • Open Access

    ARTICLE

    SA-MSVM: Hybrid Heuristic Algorithm-based Feature Selection for Sentiment Analysis in Twitter

    C. P. Thamil Selvi1,*, R. PushpaLakshmi2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2439-2456, 2023, DOI:10.32604/csse.2023.029254

    Abstract One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics. Bigdata is created from social websites like Facebook, WhatsApp, Twitter, etc. Opinions about products, persons, initiatives, political issues, research achievements, and entertainment are discussed on social websites. The unique data analytics method cannot be applied to various social websites since the data formats are different. Several approaches, techniques, and tools have been used for big data analytics, opinion mining, or sentiment analysis, but the accuracy is yet to be improved. The proposed work is motivated to do sentiment analysis on Twitter data… More >

  • Open Access

    ARTICLE

    Modeling of Optimal Deep Learning Based Flood Forecasting Model Using Twitter Data

    G. Indra1,*, N. Duraipandian2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1455-1470, 2023, DOI:10.32604/iasc.2023.027703

    Abstract A flood is a significant damaging natural calamity that causes loss of life and property. Earlier work on the construction of flood prediction models intended to reduce risks, suggest policies, reduce mortality, and limit property damage caused by floods. The massive amount of data generated by social media platforms such as Twitter opens the door to flood analysis. Because of the real-time nature of Twitter data, some government agencies and authorities have used it to track natural catastrophe events in order to build a more rapid rescue strategy. However, due to the shorter duration of Tweets, it is difficult to… More >

  • Open Access

    ARTICLE

    Enhanced Sentiment Analysis Algorithms for Multi-Weight Polarity Selection on Twitter Dataset

    Ayman Mohamed Mostafa*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1015-1034, 2023, DOI:10.32604/iasc.2023.028041

    Abstract Sentiment analysis is based on the orientation of user attitudes and satisfaction towards services and subjects. Different methods and techniques have been introduced to analyze sentiments for obtaining high accuracy. The sentiment analysis accuracy depends mainly on supervised and unsupervised mechanisms. Supervised mechanisms are based on machine learning algorithms that achieve moderate or high accuracy but the manual annotation of data is considered a time-consuming process. In unsupervised mechanisms, a lexicon is constructed for storing polarity terms. The accuracy of analyzing data is considered moderate or low if the lexicon contains small terms. In addition, most research methodologies analyze datasets… More >

Displaying 11-20 on page 2 of 42. Per Page