Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (156)
  • Open Access

    ARTICLE

    PanopticUAV: Panoptic Segmentation of UAV Images for Marine Environment Monitoring

    Yuling Dou1, Fengqin Yao1, Xiandong Wang1, Liang Qu2, Long Chen3, Zhiwei Xu4, Laihui Ding4, Leon Bevan Bullock1, Guoqiang Zhong1, Shengke Wang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 1001-1014, 2024, DOI:10.32604/cmes.2023.027764 - 22 September 2023

    Abstract UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience, low cost and convenient maintenance. In marine environmental monitoring, the similarity between objects such as oil spill and sea surface, Spartina alterniflora and algae is high, and the effect of the general segmentation algorithm is poor, which brings new challenges to the segmentation of UAV marine images. Panoramic segmentation can do object detection and semantic segmentation at the same time, which can well solve the polymorphism problem of objects in UAV ocean images. Currently, there are few studies on… More >

  • Open Access

    ARTICLE

    Multi-Equipment Detection Method for Distribution Lines Based on Improved YOLOx-s

    Lei Hu1,*, Yuanwen Lu1, Si Wang2, Wenbin Wang3, Yongmei Zhang4

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2735-2749, 2023, DOI:10.32604/cmc.2023.042974 - 26 December 2023

    Abstract The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous inspection of distribution lines by Unmanned Aerial Vehicle (UAV) due to the complex background of distribution lines, variable morphology of equipment, and large differences in equipment sizes. Therefore, aiming at the difficult detection of power equipment in UAV inspection images, we propose a multi-equipment detection method for inspection of distribution lines based on the YOLOx-s. Based on the YOLOx-s network, we make the following improvements: 1) The Receptive Field Block (RFB) module is added after the shallow feature layer… More >

  • Open Access

    ARTICLE

    Learning Dual-Domain Calibration and Distance-Driven Correlation Filter: A Probabilistic Perspective for UAV Tracking

    Taiyu Yan1, Yuxin Cao1, Guoxia Xu1, Xiaoran Zhao2, Hu Zhu1, Lizhen Deng3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3741-3764, 2023, DOI:10.32604/cmc.2023.039828 - 26 December 2023

    Abstract Unmanned Aerial Vehicle (UAV) tracking has been possible because of the growth of intelligent information technology in smart cities, making it simple to gather data at any time by dynamically monitoring events, people, the environment, and other aspects in the city. The traditional filter creates a model to address the boundary effect and time filter degradation issues in UAV tracking operations. But these methods ignore the loss of data integrity terms since they are overly dependent on numerous explicit previous regularization terms. In light of the aforementioned issues, this work suggests a dual-domain Jensen-Shannon divergence… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach to Classify the Plant Leaf Species

    Javed Rashid1,2, Imran Khan1, Irshad Ahmed Abbasi3, Muhammad Rizwan Saeed4, Mubbashar Saddique5,*, Mohamed Abbas6,7

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3897-3920, 2023, DOI:10.32604/cmc.2023.040356 - 08 October 2023

    Abstract Many plant species have a startling degree of morphological similarity, making it difficult to split and categorize them reliably. Unknown plant species can be challenging to classify and segment using deep learning. While using deep learning architectures has helped improve classification accuracy, the resulting models often need to be more flexible and require a large dataset to train. For the sake of taxonomy, this research proposes a hybrid method for categorizing guava, potato, and java plum leaves. Two new approaches are used to form the hybrid model suggested here. The guava, potato, and java plum More >

  • Open Access

    ARTICLE

    Siamese Dense Pixel-Level Fusion Network for Real-Time UAV Tracking

    Zhenyu Huang1,2, Gun Li2, Xudong Sun1, Yong Chen1, Jie Sun1, Zhangsong Ni1,*, Yang Yang1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3219-3238, 2023, DOI:10.32604/cmc.2023.039489 - 08 October 2023

    Abstract Onboard visual object tracking in unmanned aerial vehicles (UAVs) has attracted much interest due to its versatility. Meanwhile, due to high precision, Siamese networks are becoming hot spots in visual object tracking. However, most Siamese trackers fail to balance the tracking accuracy and time within onboard limited computational resources of UAVs. To meet the tracking precision and real-time requirements, this paper proposes a Siamese dense pixel-level network for UAV object tracking named SiamDPL. Specifically, the Siamese network extracts features of the search region and the template region through a parameter-shared backbone network, then performs correlation… More >

  • Open Access

    ARTICLE

    Honeypot Game Theory against DoS Attack in UAV Cyber

    Shangting Miao1, Yang Li2,*, Quan Pan2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2745-2762, 2023, DOI:10.32604/cmc.2023.037257 - 08 October 2023

    Abstract A space called Unmanned Aerial Vehicle (UAV) cyber is a new environment where UAV, Ground Control Station (GCS) and business processes are integrated. Denial of service (DoS) attack is a standard network attack method, especially suitable for attacking the UAV cyber. It is a robust security risk for UAV cyber and has recently become an active research area. Game theory is typically used to simulate the existing offensive and defensive mechanisms for DoS attacks in a traditional network. In addition, the honeypot, an effective security vulnerability defense mechanism, has not been widely adopted or modeled… More >

  • Open Access

    Time-Efficient Blockchain Framework for Improved Data Transmission in Autonomous Systems

    Abdulrahman M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal of Blockchain and Intelligent Computing, Vol.1, pp. 1-13, 2023, DOI:10.32604/jbic.2023.041340 - 29 September 2023

    Abstract Blockchain technology is increasingly used to design trustworthy and reliable platforms for sharing information in a plethora of industries. It is a decentralized system that acts as an immutable record for storing data. It has the potential to disrupt a range of fields that rely on data, including autonomous systems like Unmanned Aerial Vehicles (UAVs). In this paper, we propose a framework based on blockchain and distributed ledger technology to improve transmission time and provide a secured and trusted method for UAVs to transfer data to the consumer efficiently while maintaining data reliability. The results More >

  • Open Access

    ARTICLE

    Enhancement of UAV Data Security and Privacy via Ethereum Blockchain Technology

    Sur Singh Rawat1,*, Youseef Alotaibi2, Nitima Malsa1, Vimal Gupta1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1797-1815, 2023, DOI:10.32604/cmc.2023.039381 - 30 August 2023

    Abstract Unmanned aerial vehicles (UAVs), or drones, have revolutionized a wide range of industries, including monitoring, agriculture, surveillance, and supply chain. However, their widespread use also poses significant challenges, such as public safety, privacy, and cybersecurity. Cyberattacks, targeting UAVs have become more frequent, which highlights the need for robust security solutions. Blockchain technology, the foundation of cryptocurrencies has the potential to address these challenges. This study suggests a platform that utilizes blockchain technology to manage drone operations securely and confidentially. By incorporating blockchain technology, the proposed method aims to increase the security and privacy of drone… More >

  • Open Access

    ARTICLE

    Archimedes Optimization with Deep Learning Based Aerial Image Classification for Cybersecurity Enabled UAV Networks

    Faris Kateb, Mahmoud Ragab*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2171-2185, 2023, DOI:10.32604/csse.2023.039931 - 28 July 2023

    Abstract The recent adoption of satellite technologies, unmanned aerial vehicles (UAVs) and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality. But, security concerns with drones were increasing as drone nodes have been striking targets for cyberattacks because of immensely weak inbuilt and growing poor security volumes. This study presents an Archimedes Optimization with Deep Learning based Aerial Image Classification and Intrusion Detection (AODL-AICID) technique in secure UAV networks. The presented AODL-AICID technique concentrates on two major processes: image classification and intrusion detection. For aerial image classification, More >

  • Open Access

    ARTICLE

    RO-SLAM: A Robust SLAM for Unmanned Aerial Vehicles in a Dynamic Environment

    Jingtong Peng*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2275-2291, 2023, DOI:10.32604/csse.2023.039272 - 28 July 2023

    Abstract When applied to Unmanned Aerial Vehicles (UAVs), existing Simultaneous Localization and Mapping (SLAM) algorithms are constrained by several factors, notably the interference of dynamic outdoor objects, the limited computing performance of UAVs, and the holes caused by dynamic objects removal in the map. We proposed a new SLAM system for UAVs in dynamic environments to solve these problems based on ORB-SLAM2. We have improved the Pyramid Scene Parsing Network (PSPNet) using Depthwise Separable Convolution to reduce the model parameters. We also incorporated an auxiliary loss function to supervise the hidden layer to enhance accuracy. Then… More >

Displaying 81-90 on page 9 of 156. Per Page