Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Hybrid LSTM-Single Candidate Optimizer Model for Short-Term Wind Power Prediction

    Mehmet Balci1,*, Emrah Dokur2, Ugur Yuzgec3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 945-968, 2025, DOI:10.32604/cmes.2025.067851 - 31 July 2025

    Abstract Accurate prediction of wind energy plays a vital role in maintaining grid stability and supporting the broader shift toward renewable energy systems. Nevertheless, the inherently variable nature of wind and the intricacy of high-dimensional datasets pose major obstacles to reliable forecasting. To address these difficulties, this study presents an innovative hybrid method for short-term wind power prediction by combining a Long Short-Term Memory (LSTM) network with a Single Candidate Optimizer (SCO) algorithm. In contrast to conventional techniques that rely on random parameter initialization, the proposed LSTM-SCO framework leverages the distinctive capability of SCO to work More > Graphic Abstract

    A Hybrid LSTM-Single Candidate Optimizer Model for Short-Term Wind Power Prediction

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on ICEEMDAN-SE-LSTM Neural Network Model with Classifying Seasonal

    Shumin Sun1, Peng Yu1, Jiawei Xing1, Yan Cheng1, Song Yang1, Qian Ai2,*

    Energy Engineering, Vol.120, No.12, pp. 2761-2782, 2023, DOI:10.32604/ee.2023.042635 - 29 November 2023

    Abstract Wind power prediction is very important for the economic dispatching of power systems containing wind power. In this work, a novel short-term wind power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and (long short-term memory) LSTM neural network is proposed and studied. First, the original data is prepossessed including removing outliers and filling in the gaps. Then, the random forest algorithm is used to sort the importance of each meteorological factor and determine the input climate characteristics of the forecast model. In addition, this study conducts seasonal classification… More >

  • Open Access

    ARTICLE

    Optimization Ensemble Weights Model for Wind Forecasting System

    Amel Ali Alhussan1, El-Sayed M. El-kenawy2,3, Hussah Nasser AlEisa1,*, M. El-SAID4,5, Sayed A. Ward6,7, Doaa Sami Khafaga1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2619-2635, 2022, DOI:10.32604/cmc.2022.030445 - 16 June 2022

    Abstract Effective technology for wind direction forecasting can be realized using the recent advances in machine learning. Consequently, the stability and safety of power systems are expected to be significantly improved. However, the unstable and unpredictable qualities of the wind predict the wind direction a challenging problem. This paper proposes a practical forecasting approach based on the weighted ensemble of machine learning models. This weighted ensemble is optimized using a whale optimization algorithm guided by particle swarm optimization (PSO-Guided WOA). The proposed optimized weighted ensemble predicts the wind direction given a set of input features. The… More >

Displaying 1-10 on page 1 of 3. Per Page