Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (81)
  • Open Access

    ARTICLE

    Analysis and Power Quality Improvement in Hybrid Distributed Generation System with Utilization of Unified Power Quality Conditioner

    Noor Zanib1, Munira Batool1, Saleem Riaz2, Farkhanda Afzal3, Sufian Munawar4, Ibtisam Daqqa5, Najma Saleem5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1105-1136, 2023, DOI:10.32604/cmes.2022.021676

    Abstract This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system (DGs) that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner (UPQC). In addition to supplying active power to the utility grid, the system of hybrid wind photovoltaic functions as a UPQC, compensating reactive power and suppressing the harmonic load currents. Additionally, the load is supplied with harmonic-free, balanced and regulated output voltages. Since PVWind-UPQC is established on a dual compensation scheme, the series inverter works like a sinusoidal current source, while the… More >

  • Open Access

    ARTICLE

    Selection of Wind Turbine Systems for the Sultanate of Oman

    M. A. A. Younis1,*, Anas Quteishat1,2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 343-359, 2023, DOI:10.32604/csse.2023.029510

    Abstract The Sultanate of Oman has been dealing with a severe renewable energy issue for the past few decades, and the government has struggled to find a solution. In addition, Oman’s strategy for converting power generation to sources of renewable energy includes a goal of 60 percent of national energy demands being met by renewables by 2040, including solar and wind turbines. Furthermore, the use of small-scale energy from wind devices has been on the rise in recent years. This upward trend is attributed to advancements in wind turbine technology, which have lowered the cost of energy from wind. To calculate… More >

  • Open Access

    ARTICLE

    Wind Turbine Efficiency Under Altitude Consideration Using an Improved Particle Swarm Framework

    Haykel Marouani1,*, Fahad Awjah Almehmadi1, Rihem Farkh2, Habib Dhahri3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4981-4994, 2022, DOI:10.32604/cmc.2022.029315

    Abstract

    In this work, the concepts of particle swarm optimization-based method, named non-Gaussian improved particle swarm optimization for minimizing the cost of energy (COE) of wind turbines (WTs) on high-altitude sites are introduced. Since the COE depends on site specification constants and initialized parameters of wind turbine, the focus was on the design optimization of rotor radius, hub height and rated power. Based on literature, the COE is converted to the Saudi Arabia context. Thus, the constrained wind turbine optimization problem is developed. Then, non-Gaussian improved particle swarm optimization is provided and compared with the conventional particle swarm optimization for solving… More >

  • Open Access

    ARTICLE

    An Advanced Control Strategy for Dual-Actuator Driving System in Full-Scale Fatigue Test of Wind Turbine Blades

    Guanhua Wang1, Jinghua Wang1, Xuemei Huang1,*, Leian Zhang1, Weisheng Liu2

    Energy Engineering, Vol.119, No.4, pp. 1649-1662, 2022, DOI:10.32604/ee.2022.019695

    Abstract A new dual-actuator fatigue loading system of wind turbine blades was designed. Compared with the traditional pendulum loading mode, the masses in this system only moved linearly along the loading direction to increase the exciting force. However, the two actuators and the blade constituted a complicated non-linear energy transferring system, which led to the non-synchronization of actuators. On-site test results showed that the virtual spindle synchronous strategy commonly used in synchronous control was undesirable and caused the instability of the blade’s amplitude eventually. A cross-coupled control strategy based on the active disturbance rejection algorithm was proposed. Firstly, a control system… More >

  • Open Access

    ARTICLE

    Study of the Flow Mechanism of Wind Turbine Blades in the Yawed Condition

    Shuang Zhao1,2,3, Xijun Li4, Jianwen Wang1,2,3,*

    Energy Engineering, Vol.119, No.4, pp. 1379-1392, 2022, DOI:10.32604/ee.2022.019776

    Abstract The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°, 15°, 30°, and 45°. The angle of attack and the relative velocity of the spanwise sections of the blade were extracted with the reference points method. By analyzing the pressure distribution and the flow characteristics of the blade surface, the flow mechanism of the blade surface in the yawed condition was discussed. The results showed that the variations of the angle of attack and the relative velocity were related to the azimuth angle and the radius in the… More >

  • Open Access

    REVIEW

    Review on Research about Wake Effects of Offshore Wind Turbines

    Yehong Dong1,2, Guangyin Tang3, Yan Jia4, Zekun Wang4,5, Xiaomin Rong5, Chang Cai5, Qingan Li5, Yingjian Yang4,5,*

    Energy Engineering, Vol.119, No.4, pp. 1341-1360, 2022, DOI:10.32604/ee.2022.019150

    Abstract In recent years, the construction of offshore wind farms is developing rapidly. As the wake effect of the upstream wind turbines seriously affect the performance of the downstream wind turbines, the wake effect of offshore wind turbines has become one of the research hotspots. First, this article reviews the research methods of wake effects, including CFD numerical simulation method, wind turbine wake model based on roughness and engineering wake models. However, there is no general model that can be used directly. Then it puts forward some factors that affect the wake of offshore wind turbines. The turbulence intensity in offshore… More > Graphic Abstract

    Review on Research about Wake Effects of Offshore Wind Turbines

  • Open Access

    ARTICLE

    A New Approach for Structural Optimization with Application to Wind Turbine Tower

    Fugang Dong, Yuqiao Zheng*, Hao Li, Zhengwen He

    Energy Engineering, Vol.119, No.3, pp. 1017-1029, 2022, DOI:10.32604/ee.2022.020430

    Abstract This work takes the bionic bamboo tower (BBT) of 2 MW wind turbine as the target, and the non-dominated sorting genetic algorithm (NSGA-II) is utilized to optimize its structural parameters. Specifically, the objective functions are deformation and mass. Based on the correlation analysis, the target optimization parameters were determined. Furthermore, the Kriging model of the BBT was established through the Latin Hypercube Sampling Design (LHSD). Finally, the BBT structure is optimized with multiple objectives under the constraints of strength, natural frequency, and size. The comparison shows that the optimized BBT has an advantage in the Design Load Case (DLC). This… More >

  • Open Access

    ARTICLE

    A Preliminary Feasibility Study on Wind Resource and Assessment of a Novel Low Speed Wind Turbine for Application in Africa

    Kehinde Adeyeye1,*, Nelson Ijumba1,2, Jonathan Colton1,3

    Energy Engineering, Vol.119, No.3, pp. 997-1015, 2022, DOI:10.32604/ee.2022.018677

    Abstract This paper posits that a low-speed wind turbine design is suitable for harnessing wind energy in Africa. Conventional wind turbines consisting of propeller designs are commonly used across the world. A major hurdle to utilizing wind energy in Africa is that conventional commercial wind turbines are designed to operate at wind speeds greater than those prevalent in most of the continent, especially in sub-Sahara Africa (SSA). They are heavy and expensive to purchase, install, and maintain. As a result, only a few countries in Africa have been able to include wind energy in their energy mix. In this paper, the… More >

  • Open Access

    ARTICLE

    Energy Enhancement of Permanent Magnet Synchronous Generators Using Particle Swarm Optimization

    S. Marisargunam1,*, L. Kalaivani2, R. V. Maheswari2

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1711-1727, 2022, DOI:10.32604/iasc.2022.023643

    Abstract Wind Energy Conversion Systems (WECS) are extensively used for connecting directly to grid sources. Permanent magnet synchronous generator (PMSG) based WECS is coupled to both grid and machine through converters. PMSG usually associated rectifiers with converters and voltage source converters at machine side. In this work, PMSG associated rectifiers with converters are considered for analysis of grid stability. The proposed work used Particle Swarm Optimization (PSO) based optimization methods for extraction of maximum power within boundary condition in WECS operation using PMSG. This high-tech optimization has MPPT controller for pitch angle controller (PAC) combines with PSO optimized controllers for converter… More >

  • Open Access

    ARTICLE

    Intelligent Control of Cabin Environment Using Computational Fluid Dynamics for Intelligent Manufacturing

    Xi Wang*, Guangping Zeng

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 563-576, 2022, DOI:10.32604/fdmp.2022.017884

    Abstract An efficient and versatile intelligent algorithm is developed for the control of the cabin environment of wind power generators. The method can be used to monitor and solve wind power generation problems at the same time. It also provides several advantages with respect to other traditional methods which imply significant workload and maintenance personnel. The functional requirements of the intelligent control system are analyzed, and a control algorithm for the stepping motor is selected and evaluated. Through the comparative analysis of the active power and internal temperature curve for three kinds of output power of the prototype, it is proved… More >

Displaying 31-40 on page 4 of 81. Per Page