Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (144)
  • Open Access

    ARTICLE

    Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies

    Zonglin Li1,2, Zhenyu Gao2, Yijun Liu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2159-2175, 2024, DOI:10.32604/cmes.2023.030920

    Abstract The boundary element method (BEM) is a popular method for solving acoustic wave propagation problems, especially those in exterior domains, owing to its ease in handling radiation conditions at infinity. However, BEM models must meet the requirement of 6–10 elements per wavelength, using the conventional constant, linear, or quadratic elements. Therefore, a large storage size of memory and long solution time are often needed in solving higher-frequency problems. In this work, we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM. The first one uses a… More > Graphic Abstract

    Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies

  • Open Access

    ARTICLE

    Multi-Objective Prediction and Optimization of Vehicle Acoustic Package Based on ResNet Neural Network

    Yunru Wu1, Xiangbo Liu1, Haibo Huang1,2,*, Yudong Wu1, Weiping Ding1,2, Mingliang Yang1,2,*

    Sound & Vibration, Vol.57, pp. 73-95, 2023, DOI:10.32604/sv.2023.044601

    Abstract Vehicle interior noise has emerged as a crucial assessment criterion for automotive NVH (Noise, Vibration, and Harshness). When analyzing the NVH performance of the vehicle body, the traditional SEA (Statistical Energy Analysis) simulation technology is usually limited by the accuracy of the material parameters obtained during the acoustic package modeling and the limitations of the application conditions. In order to effectively solve these shortcomings, based on the analysis of the vehicle noise transmission path, a multi-level objective decomposition architecture of the interior noise at the driver’s right ear is established. Combined with the data-driven method, the ResNet neural network model… More >

  • Open Access

    ARTICLE

    A Secure Device Management Scheme with Audio-Based Location Distinction in IoT

    Haifeng Lin1,2, Xiangfeng Liu2, Chen Chen2, Zhibo Liu2, Dexin Zhao3, Yiwen Zhang4, Weizhuang Li4, Mingsheng Cao5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 939-956, 2024, DOI:10.32604/cmes.2023.028656

    Abstract Identifying a device and detecting a change in its position is critical for secure devices management in the Internet of Things (IoT). In this paper, a device management system is proposed to track the devices by using audio-based location distinction techniques. In the proposed scheme, traditional cryptographic techniques, such as symmetric encryption algorithm, RSA-based signcryption scheme, and audio-based secure transmission, are utilized to provide authentication, non-repudiation, and confidentiality in the information interaction of the management system. Moreover, an audio-based location distinction method is designed to detect the position change of the devices. Specifically, the audio frequency response (AFR) of several… More >

  • Open Access

    PROCEEDINGS

    Integrated Calculation of Acoustic Radiation and Propagation of Underwater Elastic Structures Based on the Simple Source Boundary Integral Equation

    Lingwen Jiang1, Mingsong Zou2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09669

    Abstract Acoustic radiation and propagation characteristics of underwater elastic structures are an organic whole, which should be considered comprehensively. Based on the three-dimensional sono-elasticity theory of ships, the integrated calculation method of acoustic radiation and propagation in ocean environment is realized by using the simple source boundary integral equation. The correctness and accuracy of the method are verified by a series of examples. Based on the domestic supercomputer platform, the parallel transformation of the algorithm is completed, and the two-level multi-core parallel is realized, which greatly improves the computing efficiency. The application of acoustic radiation calculation in composite structures is carried… More >

  • Open Access

    PROCEEDINGS

    Design Sensitivity Analysis of Thin-Body Acoustic Problems Above an Infinite Impedance Plane by Using a Fast Multipole Indirect BEM

    Menghui Liang1, Changjun Zheng1,*, Yongbin Zhang1, Chuanxing Bi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09605

    Abstract This paper presents an accurate and efficient indirect boundary element method (IBEM) accelerated by the fast multipole algorithm (FMA)for the design sensitivity analysis of large-scale thin-body acoustic problems above an infinite impedance plane. The non-uniqueness issue of the IBEM in solving exterior acoustic problems is avoided by applying a hybrid combination of single- and double-layer potentials. The half-space impedance Green’s function which involves an image complex line source and is valid for both mass-like and spring-like impedance plane is employed to involve the sound-absorbing effect of the ground surface. Explicit evaluation formulations of the singular boundary integrals are derived and… More >

  • Open Access

    PROCEEDINGS

    A Fast Direct Boundary Element Method for 3D Acoustic Problems Based on Hierarchical Matrices

    Ruoyan Li1,2, Yijun Liu1,*, Wenjing Ye2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09472

    Abstract The boundary element method (BEM) for acoustic problems is a numerical method based on solving the discretized boundary integral equation (BIE) corresponding to the Helmholtz equation. A fast direct BEM for 3D acoustic problems is proposed in this paper, which is more suitable for broadband acoustic simulation of complex structures, such as in the design and analysis of acoustic metamaterials. The main idea of the fast direct solver is based on the hierarchical off-diagonal low-rank (HODLR) matrix, randomized interpolative decomposition and fast matrix inversion formula. Several numerical examples in solving both interior and exterior acoustic problems are presented in this… More >

  • Open Access

    PROCEEDINGS

    A Multi-Frequency Topology Optimization Method for Vibro-Acoustic Problems

    Dan Li1, Jie Wang1, Haibo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09139

    Abstract In practical vibro-acoustic problems, the external excitation normally contains a certain frequency band structure [1]. Therefore, it is needed to perform optimization under frequency band analysis. For sound radiation problems caused by structural vibration, a topology optimization method for structural materials is proposed based on the acoustic-vibration coupling analysis [2-6] and the frequency-band matrix interpolation method [7,8]. By combining the advantages of FEM and BEM in structural and acoustic field analysis, the accurate solution of the acoustic-vibration coupling problem is achieved. The structural material interpolation model is established using the solid isotropic material with penalization (SIMP) method, and the topological… More >

  • Open Access

    PROCEEDINGS

    Frequency-Multiplexed Acoustic Metasurfaces Based on Multiobjective Topology Optimization

    Haoyi Cheng1, Jingwen Guo1, Wenjing Ye1.*, Xin Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09237

    Abstract With their thin thicknesses and unprecedent wave manipulation capabilities, acoustic metasurfaces have a great potential to be applied in a wide range of applications. Most existing metasurfaces are passive devices. Although passive devices are easy to implement and consume no energy, one major shortcoming of passive devices is their fixed and limited functionality, which greatly limits their application scope. To increase the functionalities of a metasurface and yet still maintain its passivity, we propose to use the wave frequency as a tuning freedom to realize multiple functionalities in one single passive device. Specifically, the passive metasurface will be designed to… More >

  • Open Access

    PROCEEDINGS

    Acoustic Topology Optimization of Sound Absorbing Materials Directly from Subdivision Surfaces with IGA-FEM/BEM

    Yanming Xu1,2, Leilei Chen1,2,*, Haojie Lian3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010581

    Abstract An isogeometric coupling algorithm based on the finite element method and the boundary element method (IGA-FEM/BEM) is proposed for the simulation of acoustic fluid-structure interaction and structuralacoustic topology optimization using the direct differentiation method. The geometries are constructed from triangular control meshes through Loop subdivision scheme. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. Numerical examples are presented to demonstrate the validity and efficiency of… More >

  • Open Access

    TUTORIAL

    Loss Factors and their Effect on Resonance Peaks in Mechanical Systems

    Roman Vinokur*

    Sound & Vibration, Vol.57, pp. 1-13, 2023, DOI:10.32604/sv.2023.041784

    Abstract The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical systems are reviewed for acoustic, vibration, and vibration fatigue applications. The main trends and relationships were obtained for linear mechanical models with hysteresis damping. The well-known features (complex module of elasticity, total loss factor, etc.) are clarified for practical engineers and students, and new results are presented (in particular, for 2-DOF in-series models with hysteresis friction). The results are of both educational and practical interest and may be applied for NVH analysis and testing, mechanical and aeromechanical design, and noise and vibration control… More >

Displaying 11-20 on page 2 of 144. Per Page