Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    A Generation Method of Letter-Level Adversarial Samples

    Huixuan Xu1, Chunlai Du1, Yanhui Guo2,*, Zhijian Cui1, Haibo Bai1

    Journal on Artificial Intelligence, Vol.3, No.2, pp. 45-53, 2021, DOI:10.32604/jai.2021.016305

    Abstract In recent years, with the rapid development of natural language processing, the security issues related to it have attracted more and more attention. Character perturbation is a common security problem. It can try to completely modify the input classification judgment of the target program without people’s attention by adding, deleting, or replacing several characters, which can reduce the effectiveness of the classifier. Although the current research has provided various methods of perturbation attacks on characters, the success rate of some methods is still not ideal. This paper mainly studies the sample generation of optimal perturbation More >

  • Open Access

    ARTICLE

    Deep Learning Approach for COVID-19 Detection in Computed Tomography Images

    Mohamad Mahmoud Al Rahhal1, Yakoub Bazi2,*, Rami M. Jomaa3, Mansour Zuair2, Naif Al Ajlan2

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2093-2110, 2021, DOI:10.32604/cmc.2021.014956

    Abstract With the rapid spread of the coronavirus disease 2019 (COVID-19) worldwide, the establishment of an accurate and fast process to diagnose the disease is important. The routine real-time reverse transcription-polymerase chain reaction (rRT-PCR) test that is currently used does not provide such high accuracy or speed in the screening process. Among the good choices for an accurate and fast test to screen COVID-19 are deep learning techniques. In this study, a new convolutional neural network (CNN) framework for COVID-19 detection using computed tomography (CT) images is proposed. The EfficientNet architecture is applied as the backbone… More >

  • Open Access

    ARTICLE

    A Survey on Adversarial Examples in Deep Learning

    Kai Chen1,*, Haoqi Zhu2, Leiming Yan1, Jinwei Wang1

    Journal on Big Data, Vol.2, No.2, pp. 71-84, 2020, DOI:10.32604/jbd.2020.012294

    Abstract Adversarial examples are hot topics in the field of security in deep learning. The feature, generation methods, attack and defense methods of the adversarial examples are focuses of the current research on adversarial examples. This article explains the key technologies and theories of adversarial examples from the concept of adversarial examples, the occurrences of the adversarial examples, the attacking methods of adversarial examples. This article lists the possible reasons for the adversarial examples. This article also analyzes several typical generation methods of adversarial examples in detail: Limited-memory BFGS (L-BFGS), Fast Gradient Sign Method (FGSM), Basic… More >

  • Open Access

    ARTICLE

    Adversarial Attacks on License Plate Recognition Systems

    Zhaoquan Gu1, Yu Su1, Chenwei Liu1, Yinyu Lyu1, Yunxiang Jian1, Hao Li2, Zhen Cao3, Le Wang1, *

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1437-1452, 2020, DOI:10.32604/cmc.2020.011834

    Abstract The license plate recognition system (LPRS) has been widely adopted in daily life due to its efficiency and high accuracy. Deep neural networks are commonly used in the LPRS to improve the recognition accuracy. However, researchers have found that deep neural networks have their own security problems that may lead to unexpected results. Specifically, they can be easily attacked by the adversarial examples that are generated by adding small perturbations to the original images, resulting in incorrect license plate recognition. There are some classic methods to generate adversarial examples, but they cannot be adopted on More >

Displaying 11-20 on page 2 of 14. Per Page