Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (159)
  • Open Access

    ARTICLE

    Unsupervised Anomaly Detection in Time Series Data via Enhanced VAE-Transformer Framework

    Chunhao Zhang1,2, Bin Xie2,3,*, Zhibin Huo1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 843-860, 2025, DOI:10.32604/cmc.2025.063151 - 09 June 2025

    Abstract Time series anomaly detection is crucial in finance, healthcare, and industrial monitoring. However, traditional methods often face challenges when handling time series data, such as limited feature extraction capability, poor temporal dependency handling, and suboptimal real-time performance, sometimes even neglecting the temporal relationships between data. To address these issues and improve anomaly detection performance by better capturing temporal dependencies, we propose an unsupervised time series anomaly detection method, VLT-Anomaly. First, we enhance the Variational Autoencoder (VAE) module by redesigning its network structure to better suit anomaly detection through data reconstruction. We introduce hyperparameters to control… More >

  • Open Access

    ARTICLE

    Intelligent Spatial Anomaly Activity Recognition Method Based on Ontology Matching

    Longgang Zhao1, Seok-Won Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4447-4476, 2025, DOI:10.32604/cmc.2025.063691 - 19 May 2025

    Abstract This research addresses the performance challenges of ontology-based context-aware and activity recognition techniques in complex environments and abnormal activities, and proposes an optimized ontology framework to improve recognition accuracy and computational efficiency. The method in this paper adopts the event sequence segmentation technique, combines location awareness with time interval reasoning, and improves human activity recognition through ontology reasoning. Compared with the existing methods, the framework performs better when dealing with uncertain data and complex scenes, and the experimental results show that its recognition accuracy is improved by 15.6% and processing time is reduced by 22.4%. More >

  • Open Access

    ARTICLE

    Robust Deep One-Class Classification Time Series Anomaly Detection

    Zhengdao Yang1, Xuewei Wang2, Yuling Chen1,*, Hui Dou1, Haiwei Sang3

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5181-5197, 2025, DOI:10.32604/cmc.2025.060564 - 19 May 2025

    Abstract Anomaly detection (AD) in time series data is widely applied across various industries for monitoring and security applications, emerging as a key research focus within the field of deep learning. While many methods based on different normality assumptions perform well in specific scenarios, they often neglected the overall normality issue. Some feature extraction methods incorporate pre-training processes but they may not be suitable for time series anomaly detection, leading to decreased performance. Additionally, real-world time series samples are rarely free from noise, making them susceptible to outliers, which further impacts detection accuracy. To address these More >

  • Open Access

    ARTICLE

    Cyber-Integrated Predictive Framework for Gynecological Cancer Detection: Leveraging Machine Learning on Numerical Data amidst Cyber-Physical Attack Resilience

    Muhammad Izhar1,*, Khadija Parwez2, Saman Iftikhar3, Adeel Ahmad4, Shaikhan Bawazeer3, Saima Abdullah4

    Journal on Artificial Intelligence, Vol.7, pp. 55-83, 2025, DOI:10.32604/jai.2025.062479 - 25 April 2025

    Abstract The growing intersection of gynecological cancer diagnosis and cybersecurity vulnerabilities in healthcare necessitates integrated solutions that address both diagnostic accuracy and data protection. With increasing reliance on IoT-enabled medical devices, digital twins, and interconnected healthcare systems, the risk of cyber-physical attacks has escalated significantly. Traditional approaches to machine learning (ML)–based diagnosis often lack real-time threat adaptability and privacy preservation, while cybersecurity frameworks fall short in maintaining clinical relevance. This study introduces HealthSecureNet, a novel Cyber-Integrated Predictive Framework designed to detect gynecological cancer and mitigate cybersecurity threats in real time simultaneously. The proposed model employs a… More >

  • Open Access

    ARTICLE

    PNSS: Unknown Face Presentation Attack Detection with Pseudo Negative Sample Synthesis

    Hongyang Wang1,2, Yichen Shi3, Jun Feng1,2,*, Zitong Yu4, Zhuofu Tao5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3097-3112, 2025, DOI:10.32604/cmc.2025.061019 - 16 April 2025

    Abstract Face Presentation Attack Detection (fPAD) plays a vital role in securing face recognition systems against various presentation attacks. While supervised learning-based methods demonstrate effectiveness, they are prone to overfitting to known attack types and struggle to generalize to novel attack scenarios. Recent studies have explored formulating fPAD as an anomaly detection problem or one-class classification task, enabling the training of generalized models for unknown attack detection. However, conventional anomaly detection approaches encounter difficulties in precisely delineating the boundary between bonafide samples and unknown attacks. To address this challenge, we propose a novel framework focusing on… More >

  • Open Access

    ARTICLE

    LogDA: Dual Attention-Based Log Anomaly Detection Addressing Data Imbalance

    Chexiaole Zhang, Haiyan Fu*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1291-1306, 2025, DOI:10.32604/cmc.2025.060740 - 26 March 2025

    Abstract As computer data grows exponentially, detecting anomalies within system logs has become increasingly important. Current research on log anomaly detection largely depends on log templates derived from log parsing. Word embedding is utilized to extract information from these templates. However, this method neglects a portion of the content within the logs and confronts the challenge of data imbalance among various log template types after parsing. Currently, specialized research on data imbalance across log template categories remains scarce. A dual-attention-based log anomaly detection model (LogDA), which leveraged data imbalance, was proposed to address these issues in More >

  • Open Access

    ARTICLE

    Hybrid Memory-Enhanced Autoencoder with Adversarial Training for Anomaly Detection in Virtual Power Plants

    Yuqiao Liu1, Chen Pan1, YeonJae Oh2,*, Chang Gyoon Lim1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4593-4629, 2025, DOI:10.32604/cmc.2025.061196 - 06 March 2025

    Abstract Virtual Power Plants (VPPs) are integral to modern energy systems, providing stability and reliability in the face of the inherent complexities and fluctuations of solar power data. Traditional anomaly detection methodologies often need to adequately handle these fluctuations from solar radiation and ambient temperature variations. We introduce the Memory-Enhanced Autoencoder with Adversarial Training (MemAAE) model to overcome these limitations, designed explicitly for robust anomaly detection in VPP environments. The MemAAE model integrates three principal components: an LSTM-based autoencoder that effectively captures temporal dynamics to distinguish between normal and anomalous behaviors, an adversarial training module that… More >

  • Open Access

    ARTICLE

    Cloud-Based Deep Learning for Real-Time URL Anomaly Detection: LSTM/GRU and CNN/LSTM Models

    Ayman Noor*

    Computer Systems Science and Engineering, Vol.49, pp. 259-286, 2025, DOI:10.32604/csse.2025.060387 - 21 February 2025

    Abstract Precisely forecasting the performance of Deep Learning (DL) models, particularly in critical areas such as Uniform Resource Locator (URL)-based threat detection, aids in improving systems developed for difficult tasks. In cybersecurity, recognizing harmful URLs is vital to lowering risks associated with phishing, malware, and other online-based attacks. Since it directly affects the model’s capacity to differentiate between benign and harmful URLs, finding the optimum mix of hyperparameters in DL models is a significant difficulty. Two commonly used architectures for sequential and spatial data processing, Long Short-Term Memory (LSTM)/Gated Recurrent Unit (GRU) and Convolutional Neural Network… More >

  • Open Access

    ARTICLE

    Multi-Head Attention Enhanced Parallel Dilated Convolution and Residual Learning for Network Traffic Anomaly Detection

    Guorong Qi1, Jian Mao1,*, Kai Huang1, Zhengxian You2, Jinliang Lin2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2159-2176, 2025, DOI:10.32604/cmc.2024.058396 - 17 February 2025

    Abstract Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features; Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection… More >

  • Open Access

    ARTICLE

    Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning

    Shijie Tang1,2, Yong Ding1,3,4,*, Huiyong Wang5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1129-1150, 2025, DOI:10.32604/cmc.2024.059143 - 03 January 2025

    Abstract As more and more devices in Cyber-Physical Systems (CPS) are connected to the Internet, physical components such as programmable logic controller (PLC), sensors, and actuators are facing greater risks of network attacks, and fast and accurate attack detection techniques are crucial. The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series. To address this issue, we propose an anomaly detection method based on distributed deep learning. Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the More >

Displaying 31-40 on page 4 of 159. Per Page