Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Nonlinear Flow Properties of Newtonian Fluids through Rough Crossed Fractures

    Zhenguo Liu1,2, Shuchen Li1,3, Richeng Liu3,*, Changzhou Zheng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1427-1440, 2023, DOI:10.32604/cmes.2023.025414

    Abstract The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length, aperture, and surface roughness of fractures. A total of 252 computational runs are performed by creating 36 computational domains, in which the Navier-Stokes equations are solved. The results show that the nonlinear relationship between flow rate and hydraulic gradient follows Forchheimer’s law–based equation. When the hydraulic gradient is small (i.e., 10−6), the streamlines are parallel to the fracture walls, indicating a linear streamline distribution. When the hydraulic gradient is large (i.e., 100), the streamlines are disturbed by a certain number of eddies,… More >

  • Open Access

    ARTICLE

    Acoustics Performance Research and Analysis of Light Timber Construction Wall Elements Based on Helmholtz Metasurface

    Si Chen1, Yuhao Zhou1, Sarah Mohrmann2, Haiyan Fu1, Yuying Zou1, Zheng Wang1,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2791-2803, 2022, DOI:10.32604/jrm.2022.021531

    Abstract Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves, this paper investigates an effective solution for light timber construction walls with acoustic problems. This study takes the light timber construction wall structure as the research object. Based on the Helmholtz resonance principle, the structure design of the wall unit, impedance tube experiment and COMSOL MULTIPHYSICS simulation calculation were carried out to obtain the change rule of acoustic performance of the Helmholtz resonance wall unit structure. The research results show that the overall stability of sound insulation of the… More > Graphic Abstract

    Acoustics Performance Research and Analysis of Light Timber Construction Wall Elements Based on Helmholtz Metasurface

  • Open Access

    ARTICLE

    Deep Feature Bayesian Classifier for SAR Target Recognition with Small Training Set

    Liguo Zhang1,2, Zilin Tian1, Yan Zhang3,*, Tong Shuai4, Shuo Liang4, Zhuofei Wu5

    Journal of New Media, Vol.4, No.2, pp. 59-71, 2022, DOI:10.32604/jnm.2022.029360

    Abstract In recent years, deep learning algorithms have been popular in recognizing targets in synthetic aperture radar (SAR) images. However, due to the problem of overfitting, the performance of these models tends to worsen when just a small number of training data are available. In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition, in this paper, we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model (RBnet) for SAR image target recognition. In the RBnet, a… More >

  • Open Access

    ARTICLE

    Ultra-Wideband Annular Ring Fed Rectangular Dielectric Resonator Antenna for Millimeter Wave 5G Applications

    Abinash Gaya1, Mohd. Haizal Jamaluddin1,*, Ayman A. Althuwayb2

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1331-1348, 2022, DOI:10.32604/cmc.2022.022041

    Abstract In this article an ultra-wideband rectangular Dielectric Resonator Antenna is designed for millimeter wave 5G frequency band applications. Indoor 5G communications require antenna system with wide bandwidth and high efficiency to enhance the throughput in the channel. To fulfill such requirements a Dielectric Resonator Antenna (DRA) is designed here which has achieved an ultra-wide bandwidth of 20.15% (22.32–27.56 GHz) which is 5.24 GHz of bandwidth centered at 26 GHz as resonating frequency. This covers the complete band 30 (24.3–27.5 GHz) of 5G spectrum. 26 and 28 GHz are considered as most popular frequencies in millimeter wave 5G communications. The aperture… More >

  • Open Access

    ARTICLE

    An Improved Range Doppler Algorithm Based on Squint FMCW SAR Imaging

    Qi Chen, Wei Cui*, Jianqiu Sun, Xingguang Li, Xuyu Tian

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 115-126, 2021, DOI:10.32604/iasc.2021.011617

    Abstract The existing range-Doppler algorithms for SAR imaging are affected by a fast-time Doppler effect so they cannot be directly applied to FMCW SAR. Moreover, range migration is more evident in squint mode. To reveal the influence of the continuous motion of FMCW SAR in the squint mode on the echo signal and optimize the imaging process, an improved range-Doppler algorithm is based on squint FMCW SAR imaging is proposed in this paper. Firstly, the imaging geometry model and echo signal model of FMCW SAR are analyzed and deduced. The problem of Doppler center offset under squint mode is eliminated by… More >

  • Open Access

    ARTICLE

    New SAR Imaging Algorithm via the Optimal Time-Frequency Transform Domain

    Zhenli Wang1, *, Qun Wang1, Jiayin Liu1, Zheng Liang1, Jingsong Xu2

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2351-2363, 2020, DOI:10.32604/cmc.2020.011909

    Abstract To address the low-resolution imaging problem in relation to traditional Range Doppler (RD) algorithm, this paper intends to propose a new algorithm based on Fractional Fourier Transform (FrFT), which proves highly advantageous in the acquisition of high-resolution Synthetic Aperture Radar (SAR) images. The expression of the optimal order of SAR range signals using FrFT is deduced in detail, and the corresponding expression of the azimuth signal is also given. Theoretical analysis shows that, the optimal order in range (azimuth) direction, which turns out to be very unique, depends on the known imaging parameters of SAR, therefore the engineering practicability of… More >

  • Open Access

    ARTICLE

    High Resolution SAR Image Algorithm with Sample Length Constraints for the Range Direction

    Zhenli Wang1, *, Qun Wang1, Fujuan Li1, Shuai Wang2

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1533-1543, 2020, DOI:10.32604/cmc.2020.09721

    Abstract The traditional Range Doppler (RD) algorithm is unable to meet practical needs owing to the limit of resolution. The order of fractional Fourier Transform (FrFT) and the length of sampling signals affect SAR imaging performance when FrFT is applied to RD algorithm. To overcome the above shortcomings, the purpose of this paper is to propose a high-resolution SAR image algorithm by using the optimal order of FrFT and the sample length constraints for the range direction. The expression of the optimal order of SAR range signals via FrFT is deduced in detail. The initial sample length and its constraints are… More >

  • Open Access

    ARTICLE

    Pollen morphology of Senecio bergii (Asteraceae), with special attention to the mesoaperture

    Montes B1,2, MG Murray1,3

    Phyton-International Journal of Experimental Botany, Vol.84, No.1, pp. 201-208, 2015, DOI:10.32604/phyton.2015.84.201

    Abstract Palynological studies contribute to understanding the taxonomy, phylogeny and ecology of the Asteraceae and other families. In this study, pollen morphology and ultrastructure of the exine of Senecio bergii Hieron. were studied using light, scanning and transmission electron microscopy. The pollen of this species is prolate-spheroidal, it has a Senecioid pattern on the exine and an apertural system composed of three apertures (ecto-, meso- and endoapertures). This pollen type is defined as tricolpororate due to the triple apertural system. This is the first description of the ultrastructure of the apertural system of the pollen of Argentine species of Senecio. The… More >

  • Open Access

    ARTICLE

    Distribution of pectins in the pollen apertures of Oenothera hookeri.velans ster/+ster:

    I.Noher de Halac1,2, I.A. Cismondi2, M.I. Rodriguez-García3, G.Famá

    BIOCELL, Vol.27, No.1, pp. 11-18, 2003, DOI:10.32604/biocell.2003.27.011

    Abstract Cell wall pectins are some of the most complex biopolymers known, and yet their functions remain largely mysterious. The aim of this paper was to deepen the study of the spatial pattern of pectin distribution in the aperture of Oenothera hookeri.velans ster/+ster fertile pollen. We used “in situ” immunocytochemical techniques at electron microscopy, involving monoclonal antibodies JIM5 and JIM7 directed against pectin epitopes in fertile pollen grains of Oenothera hookeri.velans ster/+ster. The same region was also analyzed by classical cytochemistry for polysaccharide detection. Immunogold labelling at the JIM7 epitope showed only in mature pollen labelling mainly located at the intine… More >

  • Open Access

    ARTICLE

    Frequency Domain Filtering SAR Interferometric Phase Noise Using the Amended Matrix Pencil Model

    Y,ong Gao1, Shubi Zhang1,*, Kefei Zhang2,*, Shijin Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.2, pp. 349-363, 2019, DOI:10.32604/cmes.2019.03943

    Abstract Interferometric phase filtering is one of the key steps in interferometric synthetic aperture radar (InSAR/SAR). However, the ideal filtering results are difficult to obtain due to dense fringe and low coherence regions. Moreover, the InSAR/SAR data range is relatively large, so the efficiency of interferential phase filtering is one of the major problems. In this letter, we proposed an interferometric phase filtering method based on an amended matrix pencil and linear window mean filter. The combination of the matrix pencil and the linear mean filter are introduced to the interferometric phase filtering for the first time. First, the interferometric signal… More >

Displaying 1-10 on page 1 of 12. Per Page