Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (922)
  • Open Access

    ARTICLE

    Application of the Time-Domain Boundary Element Method to Analysis of Flow-Acoustic Interaction in a Hole-tone Feedback System with a Tailpipe

    Mikael A. Langthjem1, Masami Nakano2

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.4, pp. 227-241, 2013, DOI:10.3970/cmes.2013.096.227

    Abstract This paper is concerned with a mathematical model of a simple axisymmetric silencer-like model, consisting of a hole-tone feedback system equipped with a tailpipe. The unstable shear layer is modeled via a discrete vortex method, based on axisymmetric vortex rings. The aeroacoustic model is based on the Powell- Howe theory of vortex sound. Boundary integrals are discretized via the boundary element method; but the tailpipe is represented by the exact (one-dimensional) solution. It is demonstrated though numerical examples that this numerical model can display lock-in of the self-sustained flow oscillations to the resonant acoustic oscillations. More >

  • Open Access

    ARTICLE

    Comparison and Performance Analysis of Multiple CPU/GPU Computing Systems – Resin Infusion Flow Modeling Application

    R.H. Haney1, R.V. Mohan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.5, pp. 431-452, 2013, DOI:10.3970/cmes.2013.095.431

    Abstract The use of Graphics Processing Units (GPUs) as co-processors for single CPU/GPU computing systems has become pronounced in high performance computing research, however the solution of truly large scale computationally intensive problems require the utilization of multiple computing nodes. Multiple CPU/GPU computing systems bring new complexities to the observed performance of computationally intensive applications, the more salient of which is the cost of local CPU-GPU host and intra-nodal communication. This paper compares and analyzes the performance of a computationally intensive application represented by resin infusion flow during liquid composite molding process for the manufacture of structural composites application via two… More >

  • Open Access

    ARTICLE

    Application of a Hybrid Mesh-free Method Based on Generalized Finite Difference (GFD) Method for Natural Frequency Analysis of Functionally Graded Nanocomposite Cylinders Reinforced by Carbon Nanotubes

    Seyed Mahmoud Hosseini 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.1, pp. 1-29, 2013, DOI:10.3970/cmes.2013.095.001

    Abstract In this article, the effects of carbon nanotubes distributions on natural frequency are studied for a functionally graded nanocomposite thick hollow cylinder reinforced by single-walled carbon nanotubes using a hybrid mesh-free method. The FG nanocomposite cylinder is excited by a shock loading, which is applied on the inner surface of cylinder. The first natural frequency is obtained for various nonlinear grading patterns of distributions of the aligned carbon nanotubes. The effects of various nonlinear grading patterns on natural frequency are obtained and discussed in details. The presented hybrid mesh-free method is based on the generalized finite difference (GFD) method for… More >

  • Open Access

    ARTICLE

    Application of the MLPG Mixed Collocation Method for Solving Inverse Problems of Linear Isotropic/Anisotropic Elasticity with Simply/Multiply-Connected Domains

    Tao Zhang1,2, Leiting Dong2,3, Abdullah Alotaibi4, Satya N. Atluri2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.1, pp. 1-28, 2013, DOI:10.3970/cmes.2013.094.001

    Abstract In this paper, a novel Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method is developed for solving the inverse Cauchy problem of linear elasticity, wherein both the tractions as well as displacements are prescribed/measured at a small portion of the boundary of an elastic body. The elastic body may be isotropic/anisotropic and simply connected or multiply-connected. In the MLPG mixed collocation method, the same meshless basis function is used to interpolate both the displacement as well as the stress fields. The nodal stresses are expressed in terms of nodal displacements by enforcing the constitutive relation between stress and the displacement gradient… More >

  • Open Access

    REVIEW

    Applications of the MLPG Method in Engineering & Sciences: A Review

    J. Sladek1, P. Stanak1, Z-D. Han2, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 423-475, 2013, DOI:10.3970/cmes.2013.092.423

    Abstract A review is presented for analysis of problems in engineering & the sciences, with the use of the meshless local Petrov-Galerkin (MLPG) method. The success of the meshless methods lie in the local nature, as well as higher order continuity, of the trial function approximations, high adaptivity and a low cost to prepare input data for numerical analyses, since the creation of a finite element mesh is not required. There is a broad variety of meshless methods available today; however the focus is placed on the MLPG method, in this paper. The MLPG method is a fundamental base for the… More >

  • Open Access

    ARTICLE

    An approximately H1-optimal Petrov-Galerkin meshfree method: application to computation of scattered light for optical tomography

    N Pimprikar1, J Teresa2, D Roy1,3, R M Vasu4, K Rajan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.1, pp. 33-61, 2013, DOI:10.3970/cmes.2013.092.033

    Abstract Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the… More >

  • Open Access

    ARTICLE

    A New Anisotropic Local Meshing Method and Its Application in Parametric Surface Triangulation

    W.W. Zhang1, Y.F. Nie1, Y.Q. Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.6, pp. 507-530, 2012, DOI:10.3970/cmes.2012.088.507

    Abstract A new algorithm for anisotropic triangular meshes generation in two dimension is presented. The inputs to the algorithm are the boundary geometry information and a metric tensor that specifies the desired element size and shape. The initial nodes are firstly distributed according to the above mentioned geometrical information, after bubble simulation, the optimized nodes set that meets the requirements of the metric tensor is obtained quickly. Then taking full advantage of the nodes set and the adjacency lists information provided by the process of node placement, a handful of non-satellite nodes are removed from the adjacency lists of the nodes… More >

  • Open Access

    ARTICLE

    Application of Geometric Approach for Fuzzy Linear Systems to a Fuzzy Input-Output Analysis

    Nizami Gasilov1, Sahin Emrah Amrahov2 , Afet Golayoglu Fatullayev ˇ 1, Halil Ibrahim Karaka¸s1, Ömer Akın3

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.2, pp. 93-106, 2012, DOI:10.3970/cmes.2012.088.093

    Abstract Uncertainties in some parameters of problems of Leontief input-output analysis lead naturally to fuzzy linear systems. In this work, we consider input-output model, where the technology matrix is crisp and the vector of final outputs is fuzzy. The model is expressed by a fuzzy linear system with crisp matrix and with fuzzy right-hand side vector. We apply a geometric method for solving the system. The method finds the solution in the form of a fuzzy set of vectors. The solution set is shown to be a parallelepiped in coordinate space and is expressed by an explicit formula. The features of… More >

  • Open Access

    ARTICLE

    Modelling of the Frequency Response to Dynamic Nanoindentation of Soft Hydrated Anisotropic Materials: Application to Articular Cartilage

    Taffetani M.1, Bertarelli E.1,2, Gottardi R.3,4, Raiteri R.5, Vena P.1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 433-460, 2012, DOI:10.3970/cmes.2012.087.433

    Abstract Dynamic nanoindentation is a novel nanomechanical testing that is being increasingly used to characterize the frequency response of viscoelastic materials and of soft hydrated biological tissues at the micrometric and nanometric length scales. This technique is able to provide more information than those obtained by simple indentation; however, its interpretation is still an open issue for complex materials such as the case of anisotropic biological tissues that generally have a high water content. This work presents a numerical model to characterize the frequency response of poro-elastic tissues subjected to harmonic indentation loading with particular regard to the effect of geometrical… More >

  • Open Access

    ARTICLE

    Dynamical Newton-Like Methods for Solving Ill-Conditioned Systems of Nonlinear Equations with Applications to Boundary Value Problems

    Cheng-Yu Ku1,2,3,Weichung Yeih1,2, Chein-Shan Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.2, pp. 83-108, 2011, DOI:10.3970/cmes.2011.076.083

    Abstract In this paper, a general dynamical method based on the construction of a scalar homotopy function to transform a vector function of Non-Linear Algebraic Equations (NAEs) into a time-dependent scalar function by introducing a fictitious time-like variable is proposed. With the introduction of a transformation matrix, the proposed general dynamical method can be transformed into several dynamical Newton-like methods including the Dynamical Newton Method (DNM), the Dynamical Jacobian-Inverse Free Method (DJIFM), and the Manifold-Based Exponentially Convergent Algorithm (MBECA). From the general dynamical method, we can also derive the conventional Newton method using a certain fictitious time-like function. The formulation presented… More >

Displaying 801-810 on page 81 of 922. Per Page