Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (924)
  • Open Access

    ARTICLE

    A New Interval Comparison Relation and Application in Interval Number Programming for Uncertain Problems

    C. Jiang1,2, X. Han1, D. Li3

    CMC-Computers, Materials & Continua, Vol.27, No.3, pp. 275-304, 2012, DOI:10.3970/cmc.2011.027.275

    Abstract For optimization or decision-making problems with interval uncertainty, the interval comparison relation plays a very important role, as only based on it a better or best decision can be determined. In this paper, a new kind of interval comparison relation termed as reliability-based possibility degree of interval is proposed to give quantitative evaluations on "how much better" of one interval than another, which is more suitable for engineering reliability analysis and numerical computation than the existing relations. In the new relation, the range of the comparing values is extended into the whole real number field, and the precise comparison is… More >

  • Open Access

    ARTICLE

    A Modified Prandtl-Ishlinskii Model and its Applications to Inverse Control of Piezoelectric Actuators

    J. H. Qiu1,2, H. Jiang1, H. L. Ji1, N. Hu3

    CMC-Computers, Materials & Continua, Vol.26, No.1, pp. 1-18, 2011, DOI:10.3970/cmc.2011.026.001

    Abstract Piezoelectric actuators based motion-producing devices are widely used in precision machining, deformable mirrors, micropumps and piezoelectric injection systems. However, because of their hysteresis nonlinear property, the piezoelectric actuators can not provide absolutely precise displacements. To solve this problem, researchers applied inverse control method to compensate the nonlinearity of piezoelectric actuators, and the inverse models are mainly based on traditional hysteresis models such as the Preiasch model or Prandtl-Ishlinskii model. In this paper, a new approach for inverse control of piezoelectric actuators is presented. The new method utilize a modified Prandtl-Ishlinskii model which is based on a combination of two asymmetric… More >

  • Open Access

    ARTICLE

    Development and Application of a High-Performance Triangular Shell Element and an Explicit Algorithm in OpenSees for Strongly Nonlinear Analysis

    Xinzheng Lu1,*, Yuan Tian2, Chujin Sun2, Shuhao Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 561-582, 2019, DOI:10.32604/cmes.2019.04770

    Abstract The open-source finite element software, OpenSees, is widely used in the earthquake engineering community. However, the shell elements and explicit algorithm in OpenSees still require further improvements. Therefore, in this work, a triangular shell element, NLDKGT, and an explicit algorithm are proposed and implemented in OpenSees. Specifically, based on the generalized conforming theory and the updated Lagrangian formulation, the proposed NLDKGT element is suitable for problems with complicated boundary conditions and strong nonlinearity. The accuracy and reliability of the NLDKGT element are validated through typical cases. Furthermore, by adopting the leapfrog integration method, an explicit algorithm in OpenSees and a… More >

  • Open Access

    EDITORIAL

    Preface: Advances in OpenSees Applications to Civil Engineering

    Joel Conte1, Frank McKenna2, Quan Gu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 467-470, 2019, DOI:10.32604/cmes.2019.08174

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Preface: Nano/Micro Structures in Application of Computational Mechanics

    Chang-Chun Lee1,*, Nien-Ti Tsou2, Taek-Soo Kim3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 235-237, 2019, DOI:10.32604/cmes.2019.07807

    Abstract This article has no abstract. More >

  • Open Access

    REVIEW

    Overview of Computational Modeling in Nano/Micro Scaled Thin Films Mechanical Properties and Its Applications

    Chang-Chun Lee1,*, Pei-Chen Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 239-260, 2019, DOI:10.32604/cmes.2019.06859

    Abstract This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films, in which the application of different computational methods is included. The concept and fundamental theories of concerned applications, material behavior estimations, interfacial delamination behavior, strain engineering, and multilevel modeling are thoroughly discussed. Moreover, an example of an interfacial adhesion estimation is presented to systematically estimate the related mechanical reliability issue in the microelectronic industry. The presented results show that the peeled mode fracture is the dominant delamination behavior of layered material system, with high stiffness along the bonding interface. However, the shear mode fracture… More >

  • Open Access

    ARTICLE

    Equivalence of Ratio and Residual Approaches in the Homotopy Analysis Method and Some Applications in Nonlinear Science and Engineering

    Mustafa Turkyilmazoglu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 63-81, 2019, DOI:10.32604/cmes.2019.06858

    Abstract A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications. It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual (squared) error. A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach, especially… More >

  • Open Access

    ARTICLE

    Development of Non-Dissipative Direct Time Integration Method for Structural Dynamics Application

    Sun-Beom Kwon1, Jae-Myung Lee1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 41-89, 2019, DOI:10.31614/cmes.2019.03879

    Abstract A direct time integration scheme based on Gauss-Legendre quadrature is proposed to solve problems in linear structural dynamics. The proposed method is a one-parameter non-dissipative scheme. Improved stability, accuracy, and dispersion characteristics are achieved using appropriate values of the parameter. The proposed scheme has second-order accuracy with and without physical damping. Moreover, its stability, accuracy, and dispersion are analyzed. In addition, its performance is demonstrated by the two-dimensional scalar wave problem, the single-degree-of-freedom problem, two degrees-of-freedom spring system, and beam with boundary constraints. The wave propagation problem is solved in the high frequency wave regime to demonstrate the advantage of… More >

  • Open Access

    ARTICLE

    A Novel Interacting Multiple-Model Method and Its Application to Moisture Content Prediction of ASP Flooding

    Shurong Li1,*, Yulei Ge2, Renlin Zang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.1, pp. 95-116, 2018, DOI:10.3970/cmes.2018.114.095

    Abstract In this paper, an interacting multiple-model (IMM) method based on data-driven identification model is proposed for the prediction of nonlinear dynamic systems. Firstly, two basic models are selected as combination components due to their proved effectiveness. One is Gaussian process (GP) model, which can provide the predictive variance of the predicted output and only has several optimizing parameters. The other is regularized extreme learning machine (RELM) model, which can improve the over-fitting problem resulted by empirical risk minimization principle and enhances the overall generalization performance. Then both of the models are updated continually using meaningful new data selected by data… More >

  • Open Access

    ARTICLE

    Atomic Exponential Basis Function Eup(x,ω) - Development and Application

    Nives Brajčić Kurbaša1, Blaž Gotovac1, Vedrana Kozulić1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.6, pp. 493-530, 2016, DOI:10.3970/cmes.2016.111.493

    Abstract This paper presents exponential Atomic Basis Functions (ABF), which are called Eup(x,ω). These functions are infinitely differentiable finite functions that unlike algebraic up(x) basis functions, have an unspecified parameter - frequency w. Numerical experiments show that this class of atomic functions has good approximation properties, especially in the case of large gradients (Gibbs phenomenon). In this work, for the first time, the properties of exponential ABF are thoroughly investigated and the expression for calculating the value of the basis function at an arbitrary point of the domain is given in a form suitable for implementation in numerical analysis. Application of… More >

Displaying 781-790 on page 79 of 924. Per Page