Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (928)
  • Open Access

    ARTICLE

    Surfactant-Assisted Poly(lactic acid)/Cellulose Nanocrystal Bionanocomposite for Potential Application in Paper Coating

    Ragab E. Abou-Zeid1*, Mohamed A. Diab1, Salah A. A. Mohamed2, Ahmed Salama1, Hind Abdullah Aljohani3, Kamel Rizq Shoueir4

    Journal of Renewable Materials, Vol.6, No.4, pp. 394-401, 2018, DOI:10.7569/JRM.2017.634156

    Abstract The current article addresses a new strategy for the preparation of polylactic acid/cellulose nanocrystal (PLA/CNCs) nanobiocomposite films with improved structural morphology, mechanical and barrier properties for food packaging applications. The addition of hexadecyltrimethylammonium bromide (CTAB) and sodium lauryl sulfate (SLS) as cationic and anionic surfactants respectively, was found to play a crucial role in preventing re-aggregation of the CNCs during drying and improving the dispersion of CNCs in the PLA. The coated paper was characterized using mechanical tests, water vapor permeability (WVP), X-ray diffraction (XRD), scanning electron microscopy (SEM) and air permeability. The results showed that the paper coated with… More >

  • Open Access

    ARTICLE

    Valorization of Kraft Lignin as Thickener in Castor Oil for Lubricant Applications

    A. M. Borrero-López1, F. J. Santiago-Medina1, C. Valencia1,2*, M. E. Eugenio3, R. Martin-Sampedro3, J. M. Franco1,2

    Journal of Renewable Materials, Vol.6, No.4, pp. 347-361, 2018, DOI:10.7569/JRM.2017.634160

    Abstract It is known that large amounts of residual lignin are generated in the pulp and paper industry. A new alternative for Kraft lignin valorization, which consists of first a chemical modification using a diisocyanate and then the efficient dispersion in castor oil to achieve stable gel-like systems, is proposed in this work. Rheological properties and microstructure of these materials were determined by means of small amplitude oscillatory shear tests and viscous flow measurements and atomic force microscopy observations, respectively. Moreover, both standardized penetration tests and tribological assays, usually performed in the lubricant industry, were carried out to evaluate the performance… More >

  • Open Access

    ARTICLE

    Application of Amine-Functionalized Cellulose Foam for CO2 Capture and Storage in the Brewing Industry

    Lars Helmlinger1, Yejun Zhu1, Julia Gensel1, Thomas Neumeyer1, Stefan Thäter2, Franziska Strube2, Christoph Bauer2, Bernd Rosemann2, Volker Altstädt1*

    Journal of Renewable Materials, Vol.6, No.3, pp. 219-225, 2018, DOI:10.7569/JRM.2017.634161

    Abstract Due to a lack of technology, smaller breweries simply dump excess CO2 into the atmosphere, fueling the greenhouse effect and global warming. State-of-the-art CO2 capture technologies using nanofibrillated cellulose are expensive and require laborious freeze-drying. Consequently, there is a high demand for affordable alternatives in order to reduce the environmental impact in this industry sector. This work describes a novel route for a quick and cost-efficient synthesis of amine-functionalized cellulose pellets by a surfactant-assisted steam explosion process. Typical values with this method were porosity of 92% and density of 67 g/cm³. Investigations on polyethylenimine (PEI) content and distribution revealed a… More >

  • Open Access

    ARTICLE

    Application of Prunus amygdalus By-products in Eco-friendly Dyeing of Textile Fabrics

    Ibtissem Moussa1, Noureddine Baaka1, Ramzi Khiari1,2,3*, Ali Moussa4, Gérard Mortha3, Mohamed Farouk Mhenni1

    Journal of Renewable Materials, Vol.6, No.1, pp. 55-67, 2018, DOI:10.7569/JRM.2017.634141

    Abstract Natural dyes have become an interesting subject of study because of their better ecological properties in comparison to their synthetic counterparts. This article concerns the dyeing of wool, silk, and polyamide fabrics with natural dyes extracted from almond shells and stems. The developed method of dyeing by these extracts is interesting and very attractive for several reasons: firstly, the extracts used are the black liquor discharged from the industries of delignification, which is a chemical process for removing lignin from agricultural wastes to produce a cellulosic fiber; (ii) these natural dyes are renewable and available in large quantities; (iii) this… More >

  • Open Access

    ARTICLE

    Structural Refinement of Titanium-Aluminum-Niobium Alloy for Biomedical Applications

    Joaquín E. González-Hernández1, Jorge M. Cubero-Sesin1,2*, Elena Ulate-Kolitsky1, Priscilla Navarro1, Stephen Petretti1, Zenji Horita3,4

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 300-306, 2017, DOI:10.7569/JRM.2017.634120

    Abstract In this work, a modification of the microstructure of a commercial Ti-6Al-7Nb alloy was accomplished by high-pressure torsion (HPT) at room temperature, to produce a bulk nanostructure on discs of 10 mm diameter and ~0.8 mm thickness. The metallographic analyses of the discs were performed by optical microscopy and scanning electron microscopy with energy dispersive spectroscopy. The results confirmed the presence of aluminum (Al) and niobium (Nb) as the sole alloying elements, promoting a duplex (α + β) titanium (Ti) microstructure prior to HPT processing. After HPT processing, nanostructure refinement was attained, reflected in the X-ray diffraction profiles as broadening… More >

  • Open Access

    ARTICLE

    Synthesis and Application of a Novel Epoxidized Plasticizer Based on Cardanol for Poly(vinyl chloride)

    Xiaoying Li1, Xiaoan Nie1,2*, Jie Chen1, Yigang Wang1, Ke Li1

    Journal of Renewable Materials, Vol.5, No.2, pp. 154-164, 2017, DOI:10.7569/JRM.2017.634101

    Abstract Cardanol, an agricultural by-product of the industrial processing of cashew, was used to synthesize epoxidized cardanol laurate (ECDL) plasticizer. The target product was characterized using FTIR, 1H NMR and 13C NMR. The plasticizing effect of ECDL substitution for petroleum-based plasticizer dioctyl phthalate (DOP) in soft poly(vinyl chloride) (PVC) was investigated using dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and mechanical testing, and compared to PVC incorporated with commercial epoxidized soybean oil (ESBO). When DOP was partially substituted by EDCL, there was a slight increase of 5% in glass transition temperature (Tg) and a maximum increase of 14.55% in the elongation… More >

  • Open Access

    ARTICLE

    Biomatrix from Stipa tenacissima L. and its Application in Fiberboard Using Date Palm Rachis as Filler

    Mohamed Ammar1, Ramzi Khiari2,3,4*, Mohamed Naceur Belgacem3,4*, Elimame Elaloui1

    Journal of Renewable Materials, Vol.5, No.2, pp. 116-123, 2017, DOI:10.7569/JRM.2016.634136

    Abstract The present study investigated the preparation of biomatrices from Stipa tenacissima L. and its valorization for fiberboard application. Resins were produced by extracting lignin from the Stipa tenacissima L. black liquor by soda process and combining it with glyoxal as crosslinking agent to produce lignin-glyoxal-resin (LGR). The matrix was characterized by several methods, such as FTIR and ATG/ATD, and then mixed with date palm rachis as reinforcing fibers in different proportions of 30 and 50% (w/w with respect to the matrix) to produce biodegradable composite materials. Then, their thermal and mechanical properties were determined, using differential scanning calorimetry (DSC) and… More >

  • Open Access

    ARTICLE

    PLA Nanocomposites Reinforced with Cellulose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles for Packaging Application

    F. Luzi1, E. Fortunati1*, A. Jiménez2, D. Puglia1, A. Chiralt2, L. Torre1

    Journal of Renewable Materials, Vol.5, No.2, pp. 103-115, 2017, DOI:10.7569/JRM.2016.634135

    Abstract Poly(lactic acid) (PLA) based nanocomposites reinforced with 1 wt% of surfactant-modified cellulose nanocrystals (s-CNC) extracted from Posidonia oceanica plant waste and zinc oxide nanoparticles (ZnO NPs) at different concentrations (0.1 and 0.5 wt%) were prepared by solvent casting process. Their thermal, morphological, optical, mechanical and water vapor permeability properties were investigated. Tensile testing showed increased values for strength and deformation at break in PLA based formulations reinforced with s-CNC and ZnO NPs as a consequence of better nanofiller dispersion compared to binary films reinforced only with ZnO NPs. Moreover, the effect of s-CNC and ZnO NPs provoked an improvement of… More >

  • Open Access

    ARTICLE

    Hydroxytyrosol as Active Ingredient in Poly(vinyl alcohol) Films for Food Packaging Applications

    Elena Fortunati1*, Francesca Luzi1, Chiara Fanali2, Laura Dugo2, Maria Giovanna Belluomo2, Luigi Torre1, José Maria Kenny1, Luca Santi3, Roberta Bernini3

    Journal of Renewable Materials, Vol.5, No.2, pp. 81-95, 2017, DOI:10.7569/JRM.2016.634132

    Abstract Hydroxytyrosol (HTyr), a biophenol found in extra-virgin olive oil or olive oil by-products, well known for its strong antioxidant activity, was used as active ingredient for poly(vinyl alcohol) (PVA) matrix to develop film formulations by solvent casting process. The effect of HTyr on the morphological, thermal stability, optical, mechanical and release properties of PVA were investigated, while water absorption capacity, migration with food stimulants, water vapor permeability and antioxidant properties were tested taking into account the final application as food packaging systems. Morphological investigations evidenced homogeneity of all PVA/HTyr films, while the presence of HTyr clearly accounted for an increase… More >

  • Open Access

    ARTICLE

    Biobased Additives as Biodegradability Enhancers with Application in TPU-Based Footwear Components

    Isabel Patrícia Fernandes1, Mariana Barbosa1, Joana Soares Amaral2, Vera Pinto3, José Luís Rodrigues3, Maria José Ferreira3, Maria Filomena Barreiro1*

    Journal of Renewable Materials, Vol.4, No.1, pp. 47-56, 2016, DOI:10.7569/JRM.2015.634126

    Abstract Among the wide variety of materials employed in the manufacture of shoes, thermoplastic polyurethanes (TPUs) are one of the most widely used. Given its widespread use, and associated waste management problems, the development of more biodegradable and evironmentally compatible solutions is needed. In this work, a polyester-based TPU used in the footwear industry for outsoles production was modifi ed by compounding with lignin, starch and cellulose at content of 4% (w/w). The biodegradability was evaluated by using agar plate tests with the fungi Aspergillus niger ATCC16404, the Gram-negative bacteria Pseudomonas aeruginosa ATCC9027 and an association of both (consortium), and soil… More >

Displaying 761-770 on page 77 of 928. Per Page