Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (341)
  • Open Access

    ARTICLE

    Harnessing ML and GIS for Seismic Vulnerability Assessment and Risk Prioritization

    Shalu1, Twinkle Acharya1, Dhwanilnath Gharekhan1,*, Dipak Samal2

    Revue Internationale de Géomatique, Vol.33, pp. 111-134, 2024, DOI:10.32604/rig.2024.051788 - 15 May 2024

    Abstract Seismic vulnerability modeling plays a crucial role in seismic risk assessment, aiding decision-makers in pinpointing areas and structures most prone to earthquake damage. While machine learning (ML) algorithms and Geographic Information Systems (GIS) have emerged as promising tools for seismic vulnerability modeling, there remains a notable gap in comprehensive geospatial studies focused on India. Previous studies in seismic vulnerability modeling have primarily focused on specific regions or countries, often overlooking the unique challenges and characteristics of India. In this study, we introduce a novel approach to seismic vulnerability modeling, leveraging ML and GIS to address… More >

  • Open Access

    ARTICLE

    Deep-Ensemble Learning Method for Solar Resource Assessment of Complex Terrain Landscapes

    Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,*, Ping Yang3

    Energy Engineering, Vol.121, No.5, pp. 1329-1346, 2024, DOI:10.32604/ee.2023.046447 - 30 April 2024

    Abstract As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and More >

  • Open Access

    ARTICLE

    E2E-MFERC: A Multi-Face Expression Recognition Model for Group Emotion Assessment

    Lin Wang1, Juan Zhao2, Hu Song3, Xiaolong Xu4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1105-1135, 2024, DOI:10.32604/cmc.2024.048688 - 25 April 2024

    Abstract In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assess students’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis, thereby continuously promoting the improvement of teaching quality. However, most existing multi-face expression recognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance, and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single face images, which are of low quality and lack specificity, also restricting the development of this research. This paper aims to propose an end-to-end high-performance multi-face… More >

  • Open Access

    ARTICLE

    Spinal Vertebral Fracture Detection and Fracture Level Assessment Based on Deep Learning

    Yuhang Wang1,*, Zhiqin He1, Qinmu Wu1, Tingsheng Lu2, Yu Tang1, Maoyun Zhu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1377-1398, 2024, DOI:10.32604/cmc.2024.047379 - 25 April 2024

    Abstract This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’ diagnostic efficiency. Therefore, a deep-learning-based automated diagnostic system with multi-label segmentation is proposed to recognize the condition of vertebral fractures. The whole spine Computed Tomography (CT) image is segmented into the fracture, normal, and background using U-Net, and the fracture degree of each vertebra is evaluated (Genant semi-qualitative evaluation). The main work of this paper includes: First, based on the spatial configuration network (SCN) structure, U-Net is used instead of the SCN feature extraction network. The attention mechanism and… More >

  • Open Access

    ARTICLE

    Assessment of Particle Matter Pollution during Post-Earthquake Debris Removal in Adiyaman City

    Ercan Vural*

    Revue Internationale de Géomatique, Vol.33, pp. 37-50, 2024, DOI:10.32604/rig.2024.047908 - 29 March 2024

    Abstract Severe earthquakes in the world and in Turkey can cause great loss of life and property, environmental problems and health problems. In addition to the loss of life and property, earthquakes are closely related to ecosystems, air, water, and soil pollution. Particularly in post-earthquake debris removal, very large amounts of particulate matter are released and may have negative effects on the health of the local population. This study aimed to detect two types of particle matter pollution during debris removal in 25 different locations in Adiyaman City using a CEM DT 9880 particle matter measuring… More >

  • Open Access

    ARTICLE

    Movement Function Assessment Based on Human Pose Estimation from Multi-View

    Lingling Chen1,2,*, Tong Liu1, Zhuo Gong1, Ding Wang1

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 321-339, 2024, DOI:10.32604/csse.2023.037865 - 19 March 2024

    Abstract Human pose estimation is a basic and critical task in the field of computer vision that involves determining the position (or spatial coordinates) of the joints of the human body in a given image or video. It is widely used in motion analysis, medical evaluation, and behavior monitoring. In this paper, the authors propose a method for multi-view human pose estimation. Two image sensors were placed orthogonally with respect to each other to capture the pose of the subject as they moved, and this yielded accurate and comprehensive results of three-dimensional (3D) motion reconstruction that… More >

  • Open Access

    ARTICLE

    MSADCN: Multi-Scale Attentional Densely Connected Network for Automated Bone Age Assessment

    Yanjun Yu1, Lei Yu1,*, Huiqi Wang2, Haodong Zheng1, Yi Deng1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2225-2243, 2024, DOI:10.32604/cmc.2024.047641 - 27 February 2024

    Abstract Bone age assessment (BAA) helps doctors determine how a child’s bones grow and develop in clinical medicine. Traditional BAA methods rely on clinician expertise, leading to time-consuming predictions and inaccurate results. Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations. This operation is costly and subjective. To address these problems, we propose a multi-scale attentional densely connected network (MSADCN) in this paper. MSADCN constructs a multi-scale dense connectivity mechanism, which can avoid overfitting, obtain the local features effectively and prevent gradient vanishing even in limited… More >

  • Open Access

    ARTICLE

    IoT Smart Devices Risk Assessment Model Using Fuzzy Logic and PSO

    Ashraf S. Mashaleh1,2,*, Noor Farizah Binti Ibrahim1, Mohammad Alauthman3, Mohammad Almseidin4, Amjad Gawanmeh5

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2245-2267, 2024, DOI:10.32604/cmc.2023.047323 - 27 February 2024

    Abstract Increasing Internet of Things (IoT) device connectivity makes botnet attacks more dangerous, carrying catastrophic hazards. As IoT botnets evolve, their dynamic and multifaceted nature hampers conventional detection methods. This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization (PSO) to address the risks associated with IoT botnets. Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically. Fuzzy component settings are optimized using PSO to improve accuracy. The methodology allows for more complex thinking by transitioning from binary to continuous assessment. Instead of expert inputs, PSO data-driven tunes rules and membership More >

  • Open Access

    ARTICLE

    Histological Assessment of Bone Regeneration in the Maxilla with Homologous Bone Graft: A Feasible Option for Maxillary Bone Reconstruction

    Sergio Henrique Gonçalves Motta1, Ana Paula Ramos Soares1, Juliana Campos Hasse Fernandes2, Gustavo Vicentis Oliveira Fernandes2,3,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 131-148, 2024, DOI:10.32604/jrm.2023.043940 - 23 January 2024

    Abstract Bone biomaterials have been increasingly used to reconstruct maxillary atrophic ridges. Thus, the aim of this study was to evaluate bone reconstruction in the maxilla using a homologous cortico-cancellous FFB (lyophilized) graft and verify its reliability. Eight individuals were included from 2014 to 2018. The first surgery was performed to install homologous bone blocks in the maxilla. The period of the second intervention varied between 5 months and 15 days to 11 months (≈7.93 months). The biopsies were taken from the central region of the matured graft during the surgery for implant placement. All patients… More >

  • Open Access

    ARTICLE

    Assessment of the Influence of Tunnel Settlement on Operational Performance of Subway Vehicles

    Gang Niu1,2, Guangwei Zhang1, Zhaoyang Jin1, Wei Zhang3,*, Xiang Liu3

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 55-71, 2024, DOI:10.32604/sdhm.2023.044832 - 11 January 2024

    Abstract In the realm of subway shield tunnel operations, the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern. This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system. The model integrates the geometric deformations of the track, attributed to settlement, as track irregularities. A novel “cyclic model” algorithm was employed to enhance computational efficiency without compromising on precision, a claim that was rigorously validated. The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas. The More >

Displaying 41-50 on page 5 of 341. Per Page