Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Enhancing Lightweight Mango Disease Detection Model Performance through a Combined Attention Module

    Wen-Tsai Sung1, Indra Griha Tofik Isa2,3, Sung-Jung Hsiao4,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070922 - 09 December 2025

    Abstract Mango is a plant with high economic value in the agricultural industry; thus, it is necessary to maximize the productivity performance of the mango plant, which can be done by implementing artificial intelligence. In this study, a lightweight object detection model will be developed that can detect mango plant conditions based on disease potential, so that it becomes an early detection warning system that has an impact on increasing agricultural productivity. The proposed lightweight model integrates YOLOv7-Tiny and the proposed modules, namely the C2S module. The C2S module consists of three sub-modules such as the… More >

  • Open Access

    ARTICLE

    Improved YOLO11 for Maglev Train Foreign Object Detection

    Qinzhen Fang1,2, Dongliang Peng1,2, Lu Zeng1,2,*, Zixuan Jiang1,2

    Journal on Artificial Intelligence, Vol.7, pp. 469-484, 2025, DOI:10.32604/jai.2025.073016 - 06 November 2025

    Abstract To address the issues of small target miss detection, false positives in complex scenarios, and insufficient real-time performance in maglev train foreign object intrusion detection, this paper proposes a multi-module fusion improvement algorithm, YOLO11-FADA (Fusion of Augmented Features and Dynamic Attention), based on YOLO11. The model achieves collaborative optimization through three key modules: The Local Feature Augmentation Module (LFAM) enhances small target features and mitigates feature loss during down-sampling through multi-scale feature parallel extraction and attention fusion. The Dynamically Tuned Self-Attention (DTSA) module introduces learnable parameters to adjust attention weights dynamically, and, in combination with More >

  • Open Access

    ARTICLE

    MMIF: Multimodal Medical Image Fusion Network Based on Multi-Scale Hybrid Attention

    Jianjun Liu1, Yang Li2,*, Xiaoting Sun3,*, Xiaohui Wang1, Hanjiang Luo2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3551-3568, 2025, DOI:10.32604/cmc.2025.066864 - 23 September 2025

    Abstract Multimodal image fusion plays an important role in image analysis and applications. Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused information in a single image. One of the critical clinical applications of medical image fusion is to fuse anatomical and functional modalities for rapid diagnosis of malignant tissues. This paper proposes a multimodal medical image fusion network (MMIF-Net) based on multiscale hybrid attention. The method first decomposes the original image to obtain the low-rank and significant parts. Then, to utilize the features at different More >

  • Open Access

    ARTICLE

    Super-Resolution Generative Adversarial Network with Pyramid Attention Module for Face Generation

    Parvathaneni Naga Srinivasu1,2, G. JayaLakshmi3, Sujatha Canavoy Narahari4, Victor Hugo C. de Albuquerque2, Muhammad Attique Khan5, Hee-Chan Cho6, Byoungchol Chang7,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2117-2139, 2025, DOI:10.32604/cmc.2025.065232 - 29 August 2025

    Abstract The generation of high-quality, realistic face generation has emerged as a key field of research in computer vision. This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network (SRGAN) with a Pyramid Attention Module (PAM) to enhance the quality of deep face generation. The SRGAN framework is designed to improve the resolution of generated images, addressing common challenges such as blurriness and a lack of intricate details. The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction, enabling the network to capture finer details and complex facial features… More >

  • Open Access

    ARTICLE

    Attention-Augmented YOLOv8 with Ghost Convolution for Real-Time Vehicle Detection in Intelligent Transportation Systems

    Syed Sajid Ullah1,*, Muhammad Zunair Zamir2, Ahsan Ishfaq2, Salman Khan1

    Journal on Artificial Intelligence, Vol.7, pp. 255-274, 2025, DOI:10.32604/jai.2025.069008 - 29 August 2025

    Abstract Accurate vehicle detection is essential for autonomous driving, traffic monitoring, and intelligent transportation systems. This paper presents an enhanced YOLOv8n model that incorporates the Ghost Module, Convolutional Block Attention Module (CBAM), and Deformable Convolutional Networks v2 (DCNv2). The Ghost Module streamlines feature generation to reduce redundancy, CBAM applies channel and spatial attention to improve feature focus, and DCNv2 enables adaptability to geometric variations in vehicle shapes. These components work together to improve both accuracy and computational efficiency. Evaluated on the KITTI dataset, the proposed model achieves 95.4% mAP@0.5—an 8.97% gain over standard YOLOv8n—along with 96.2% More >

  • Open Access

    ARTICLE

    Transmission Facility Detection with Feature-Attention Multi-Scale Robustness Network and Generative Adversarial Network

    Yunho Na1, Munsu Jeon1, Seungmin Joo1, Junsoo Kim1, Ki-Yong Oh1,2,*, Min Ku Kim1,2,*, Joon-Young Park3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1013-1044, 2025, DOI:10.32604/cmes.2025.066447 - 31 July 2025

    Abstract This paper proposes an automated detection framework for transmission facilities using a feature-attention multi-scale robustness network (FAMSR-Net) with high-fidelity virtual images. The proposed framework exhibits three key characteristics. First, virtual images of the transmission facilities generated using StyleGAN2-ADA are co-trained with real images. This enables the neural network to learn various features of transmission facilities to improve the detection performance. Second, the convolutional block attention module is deployed in FAMSR-Net to effectively extract features from images and construct multi-dimensional feature maps, enabling the neural network to perform precise object detection in various environments. Third, an… More >

  • Open Access

    ARTICLE

    Enhanced Cutaneous Melanoma Segmentation in Dermoscopic Images Using a Dual U-Net Framework with Multi-Path Convolution Block Attention Module and SE-Res-Conv

    Kun Lan1, Feiyang Gao1, Xiaoliang Jiang1,*, Jianzhen Cheng2,*, Simon Fong3

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4805-4824, 2025, DOI:10.32604/cmc.2025.065864 - 30 July 2025

    Abstract With the continuous development of artificial intelligence and machine learning techniques, there have been effective methods supporting the work of dermatologist in the field of skin cancer detection. However, object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations, such as bubbles and scales. To address these challenges, we propose a dual U-Net network framework for skin melanoma segmentation. In our proposed architecture, we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net. First, we establish… More >

  • Open Access

    ARTICLE

    AG-GCN: Vehicle Re-Identification Based on Attention-Guided Graph Convolutional Network

    Ya-Jie Sun1, Li-Wei Qiao1, Sai Ji1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1769-1785, 2025, DOI:10.32604/cmc.2025.062950 - 09 June 2025

    Abstract Vehicle re-identification involves matching images of vehicles across varying camera views. The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images, which increases the complexity of re-identification tasks. To tackle these challenges, this study proposes AG-GCN (Attention-Guided Graph Convolutional Network), a novel framework integrating several pivotal components. Initially, AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically, thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones. Moreover, AG-GCN adopts More >

  • Open Access

    ARTICLE

    Enhanced Classification of Brain Tumor Types Using Multi-Head Self-Attention and ResNeXt CNN

    Muhammad Naeem*, Abdul Majid

    Journal on Artificial Intelligence, Vol.7, pp. 115-141, 2025, DOI:10.32604/jai.2025.062446 - 30 May 2025

    Abstract Brain tumor identification is a challenging task in neuro-oncology. The brain’s complex anatomy makes it a crucial part of the central nervous system. Accurate tumor classification is crucial for clinical diagnosis and treatment planning. This research presents a significant advancement in the multi-classification of brain tumors. This paper proposed a novel architecture that integrates Enhanced ResNeXt 101_32×8d, a Convolutional Neural Network (CNN) with a multi-head self-attention (MHSA) mechanism. This combination harnesses the strengths of the feature extraction, feature representation by CNN, and long-range dependencies by MHSA. Magnetic Resonance Imaging (MRI) datasets were employed to check… More >

  • Open Access

    ARTICLE

    Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop Pest Detection

    Zijun Gao*, Zheyi Li, Chunqi Zhang, Ying Wang, Jingwen Su

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4353-4371, 2025, DOI:10.32604/cmc.2025.061743 - 19 May 2025

    Abstract Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks; however, their application in the actual agricultural production process is still challenging owing to the problems of inter-species similarity, multi-scale, and background complexity of pests. To address these problems, this study proposes an FD-YOLO pest target detection model. The FD-YOLO model uses a Fully Connected Feature Pyramid Network (FC-FPN) instead of a PANet in the neck, which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer, enhance large-scale target features in the… More >

Displaying 1-10 on page 1 of 31. Per Page