Khalid Masood1, Mahmoud M. Al-Sakhnini2,3, Waqas Nawaz4,*, Tauqeer Faiz5,6, Abdul Salam Mohammad7, Hamza Kashif8
CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5417-5430, 2023, DOI:10.32604/cmc.2023.033590
Abstract Generally, conventional methods for anomaly detection rely on clustering, proximity, or classification. With the massive growth in surveillance videos, outliers or anomalies find ingenious ways to obscure themselves in the network and make conventional techniques inefficient. This research explores the structure of Graph neural networks (GNNs) that generalize deep learning frameworks to graph-structured data. Every node in the graph structure is labeled and anomalies, represented by unlabeled nodes, are predicted by performing random walks on the node-based graph structures. Due to their strong learning abilities, GNNs gained popularity in various domains such as natural language… More >