Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    PROCEEDINGS

    Robust Shape Optimization of Sound Barriers Based on Isogeometric Boundary Element Method and Polynomial Chaos Expansion

    Xuhang Lin1, Haibo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09388

    Abstract As an important and useful tool for reducing noise, the sound barrier is of practical significance. The sound barrier has different noise reduction effects for different sizes, shapes and properties of the sound absorbing material. Liu et al. [1] have performed shape optimization of sound barriers by using isogeometric boundary element method and method of moving asymptotes (MMA). However, in engineering practice, it is difficult to determine some parameters accurately such as material properties, geometries, external loads. Therefore, it is necessary to consider these uncertainty conditions in order to ensure the rationality of the numerical calculation of engineering problems. In… More >

  • Open Access

    PROCEEDINGS

    The Correlation Between the Cyclic Oxidation Behavior of EB-PVD TBC and Refurbishment Process

    Pan Li1, Xiaochao Jin1, Pin Lv1, Xueling Fan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010540

    Abstract Refurbishment of thermal barrier coating (TBC) has become a valuable technique to prolong the service life of high-temperature components. In this work, the effect of refurbishment process on the oxidation behaviors of TBC was investigated. Before recoating, the soft chemical stripping method was used to remove TBC from DD6 single-crystal superalloy. The results showed that a certain amount of IDZ layer with Cr-rich would be retained in the DD6 superalloy substrate after coating removal. The characteristics of the β phases change from the elongated grain shapes and a high aspect ratio in the ordinary specimens to the equiaxed shape in… More >

  • Open Access

    ARTICLE

    Biochanin A, as the Lrg1/TGF-β/Smad2 pathway blockade, attenuates blood-brain barrier damage after cerebral ischemia-reperfusion by modulating leukocyte migration patterns

    LONGSHENG FU1, JINFANG HU1, FENG SHAO2, YAOQI WU1, WEI BAI3, MINGJIN JIANG3, HAO CHEN4, LIHUA CHEN2, YANNI LV1,*

    BIOCELL, Vol.47, No.8, pp. 1869-1883, 2023, DOI:10.32604/biocell.2023.028602

    Abstract Background: Biochanin A is an excellent dietary isoflavone that has the concomitant function of both medicine and foodstuff. The attenuation function of biochanin A on blood-brain barrier (BBB) damage induced by cerebral ischemia-reperfusion remains unclear. Methods: C57BL/6 mice were subjected to 1 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. The infarct volume of the brain was stained by TTC, while leakage of the brain was quantitatively stained by Evans blue, and the neurologic deficit score was measured. Microglial-induced morphologic changes were observed via immunofluorescence staining, and rolling and adhering leukocytes in venules were observed via two-photon… More >

  • Open Access

    REVIEW

    Research Progress of Reverse Monte Carlo and Its Application in Josephson Junction Barrier Layer

    Junling Qiu*, Huihui Sun, Shuya Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2077-2109, 2023, DOI:10.32604/cmes.2023.027353

    Abstract As indispensable components of superconducting circuit-based quantum computers, Josephson junctions determine how well superconducting qubits perform. Reverse Monte Carlo (RMC) can be used to recreate Josephson junction’s atomic structure based on experimental data, and the impact of the structure on junctions’ properties can be investigated by combining different analysis techniques. In order to build a physical model of the atomic structure and then analyze the factors that affect its performance, this paper briefly reviews the development and evolution of the RMC algorithm. It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different… More >

  • Open Access

    ARTICLE

    Investigation of the Severity of Modular Construction Adoption Barriers with Large-Scale Group Decision Making in an Organization from Internal and External Stakeholder Perspectives

    Muzi Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2465-2493, 2023, DOI:10.32604/cmes.2023.026827

    Abstract Modular construction as an innovative method aids the construction industry in transforming to off-site construction production with high efficiency and environmental friendliness. Despite the obvious advantages, the uptake of modular construction is not booming as expected. However, previous studies have investigated and summarized the barriers to the adoption of modular construction. In this research, a Large-Scale Group Decision Making (LSGDM)- based analysis is first made of the severity of barriers to modular construction adoption from the perspective of construction stakeholders. In addition, the Technology-Organization-Environment (TOE) framework is utilized to identify the barriers based on three contexts (technology, organization, and environment).… More >

  • Open Access

    REVIEW

    Breaking Barriers: Selenium and Silicon-Mediated Strategies for Mitigating Abiotic Stress in Plants

    Mojtaba Kordrostami1, Ali Akbar Ghasemi-Soloklui1, Mohammad Anwar Hossain2,*, Mohammad Golam Mostofa3,4,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2713-2736, 2023, DOI:10.32604/phyton.2023.030372

    Abstract Numerous plant species, particularly those that can accumulate selenium (Se) and silicon (Si), benefit from these essential micronutrients. Se and Si accumulation in plants profoundly affects several biochemical reactions in cells. Understanding how plants react to Se/Si enrichment is crucial for ensuring adequate dietary Se/Si intake for humans and animals and increasing plant tolerance to environmental stressors. Several studies have shown that Se/Si-enriched plants are more resistant to salinity, drought, extreme temperatures, UV radiation, and excess metalloids. The interplay between Se/Si in plants is crucial for maintaining growth and development under normal conditions while providing a critical defense mechanism against… More >

  • Open Access

    ARTICLE

    EFFECTIVE THERMAL RESISTANCE COMPARISON OF AEROGEL AND MULTI-LAYER INSULATION AS RADIATIVE BARRIERS USING THE SINGLE-SIDED GUARDED HOT PLATE METHOD

    Kevin W. Irick*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.2

    Abstract The Single-sided Guarded Hot Plate Method for Comparative Testing of Thermal Radiation Barriers in Vacuum was used to evaluate the performance of a variety of aerogel insulation specimens manufactured by Aspen Aerogels® against one another and against multi-layer insulation (MLI). Testing at the Air Force Research Laboratory (AFRL) shows that the effective thermal resistance, Re, of all tested aerogel specimens are virtually bounded by the performance of 5-layer and 10-layer MLI specimens over a mean specimen temperature, Tm, range of about 270K to 315K. More >

  • Open Access

    REVIEW

    Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects

    Xiaoyan Liu1,2, Zhao Qin1,2,*, Yuxiang Ma1,2, Huamin Liu1,2,*, Xuede Wang1,2

    Journal of Renewable Materials, Vol.11, No.8, pp. 3203-3225, 2023, DOI:10.32604/jrm.2023.027613

    Abstract Packaging is a food preservation technology widely used in the world. Naturally-sourced, biodegradable polymers are becoming increasingly popular in the food packaging sector. Packaging films prepared using cellulose as raw material would contribute to resource sustainability, but the difficulty of cellulose solubilization limits their further development. In view of this, a series of novel solvent systems (LiCl/DMAc, ILs, TBAH/DMSO, NMMO, alkali/urea solutions, metal-complex solutions) were used to prepare high-strength and high-performance cellulose-based films; their characteristics and the mechanisms involved were investigated. Composite films prepared by blending cellulose with various polymers (synthetic polymers, natural polymers, proteins and enzymes, metal particles, and… More > Graphic Abstract

    Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects

  • Open Access

    ARTICLE

    Investigations on the Optimization of Contacts Barrier Height for the Improved Performance of ZnO/CdS/CZTS Solar Cells

    Fatiha Daoudi1,*, Abdelkrim Naas1, Omar Meglali1,2, Radia Boudaira3, Ahmed Gueddim1, A. M. Saeed4

    Energy Engineering, Vol.120, No.8, pp. 1803-1815, 2023, DOI:10.32604/ee.2023.028423

    Abstract The numerical simulations were performed using the AMPS-1D simulator to study the effects of the CZTS as an absorber layer and the contacts’ barrier height on the performance of four ZnO/CdS/CZTS solar cells. To obtain the best cell performances, the barrier heights of the back and front contacts were adjusted between 0.01, 0.77, 0.5, and 1.55 eV, respectively. For simulations, we used the lifetime mode, and the device performances were evaluated under AM1.5 illumination spectra. We found that the efficiency, fill factor, and open-circuit voltage were almost constant at a front contact barrier height of less than 0.31 eV. The… More > Graphic Abstract

    Investigations on the Optimization of Contacts Barrier Height for the Improved Performance of ZnO/CdS/CZTS Solar Cells

  • Open Access

    ARTICLE

    Remediation of Cu Contaminated Soil by Fe78Si9B13AP Permeability Reaction Barrier Combined with Electrokinetic Method

    Liefei Pei1,2, Xiangyun Zhang1, Zizhou Yuan1,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2969-2983, 2023, DOI:10.32604/jrm.2023.025760

    Abstract Iron-based amorphous crystalline powder Fe78Si9B13AP is used as a permeability reaction barrier (PRB) combined with an electrokinetic method (EK-PRB) to study the removal rate of Cu in contaminated soil. After treating Cucontaminated soil for 5 days under different voltage gradients and soil water content, the soil pH is between 3.1 and 7.2. The increase of voltage gradient and soil water content can effectively promote the movement of Cu2+ to the cathode. The voltage gradient is 3 V/cm, and the water content of 40% is considered to be an optional experimental condition. Therefore, under this condition, the effects of Fe78Si9B13AP and… More >

Displaying 1-10 on page 1 of 46. Per Page